高中数学基本公式整理
数学可以应用于现实世界的任何问题,因为所有的数学对象本质上都是人为定义的。高中数学需要学习的基本公式有哪些?今天小编分享一些有关高中数学基本公式整理_高中数学基本公式罗列,希望对你有帮助。
直角三角形的面积求法
直角三角形面积常用公式S=1/2ab(公式中a,b分别为直角三角形的两直角边长)。直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。它除了具有一般三角形的性质外,具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)²=BD·DC。
(2)(AB)²=BD·BC。
(3)(AC)²=CD·BC。
连续奇数相乘公式
连续奇数相乘公式为:1^3^5^7^9^...^(2^n-1)=(2^n-1)!/(2^(n-1)^(n-1)!)。一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
一直以来,由于阶乘定义的不科学,导致以后的阶乘拓展以后存在一些理解上得困扰,和数理逻辑的不顺。
阶乘从正整数一直拓展到复数。传统的定义不明朗。所以必须科学再定义它的概念
真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!
对于复数应该是指所有模n小于或等于│n│的同余数之积。。。对于任意实数n的规范表达式为:
正数 n=m+x,m为其正数部,x为其小数部
负数n=-m-x,-m为其正数部,-x为其小数部
对于纯复数
n=(m+x)i,或n=-(m+x)i
我们再拓展阶乘到纯复数:
正实数阶乘: n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!
负实数阶乘: (-n)!=cos(m )│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!
(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!
(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!
s=兀r2的面积公式
s=兀r2的面积公式意思为:把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)乘以二分之一周长C,S=r^C/2=r^πr。
圆的相关概念
径
1.连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)
2.通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。
在同一个圆中,圆的直径d=2r
弦
1.连接圆上任意两点的线段叫做弦(chord).在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
弧
1.圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。
2.大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
3.在同圆或等圆中,能够互相重合的两条弧叫做等弧。
sin平方x求导
运算方法有以下两种:1.(sin²x)'=2sinx(sinx)'=2sinxcosx=sin2x。2.(sin²x)'=[(1-cos2x)/2]'=[1/2-(cos2x)/2]'=0-½(-sin2x)(2x)'=½(sin2x)×2=sin2x。
1导数第一定义
设函数y=f(x)在点x0的某个邻域内有定义当自变量x在x0处有增量△x(x0+△x也在该邻域内)时相应地函数取得增量△y=f(x0+△x)-f(x0)如果△y与△x之比当△x→0时极限存在则称函数y=f(x)在点x0处可导并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义。
2导数第二定义
设函数y=f(x)在点x0的某个邻域内有定义当自变量x在x0处有变化△x(x-x0也在该邻域内)时相应地函数变化△y=f(x)-f(x0)如果△y与△x之比当△x→0时极限存在则称函数y=f(x)在点x0处可导并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义。
3导函数与导数
如果函数y=f(x)在开区间I内每一点都可导就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数y=f(x)的导函数记作y'、f'(x)、dy/dx、df(x)/dx,导函数简称导数。