5068教学资源网 > 儿童教育 > 功课辅导 > 学科辅导 > 数学学习 >

初中数学期末选择题解题方法分享

2020-09-09 13:22:58
|小洁

  今天小编为同学们介绍的是关于初中数学期末选择题解题方法,初中数学对于同学们来说会不会很难?接下来就让我们一起来学习一下吧,希望可以帮助到同学们。

初中数学期末选择题解题方法分享

  一、选择题的解法

  1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

  2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

  在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

  3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

  4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;

  每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

  5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  二、常用的数学思想方法

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;

  这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;

  根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

相关推荐

热门推荐

2273
|