优秀八年级数学教案人教版
代数是数学的一个分支,研究数及其运算,如加法、减法、乘法和除法,以及未知数的代数表达式和方程。这里给大家分享一些关于优秀八年级数学教案人教版,供大家参考学习。
优秀八年级数学教案人教版篇1
教学目标:
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重点:
经历发现长方形、正方形对称轴条数的过程。
教学难点:
画平面图形的对称轴。
教学准备:
多媒体课件、书P114页的平面图形。
教学过程:
一、复习导入
出示飞机图、蝴蝶图、奖杯图。提问:这三幅图有什么共同的特征?(都是轴对称图形)
指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)
把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点划线画出对称轴,并板书:对称轴)
思考:怎样判断一个图形是不是轴对称图形?
谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)
二、教学例题
1、师:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2、指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?
对他的发言有没有不同的意见?
谁还有不同的折法吗?也来展示一下。(指名展示)
提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3、师:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
追问:对角线折出来的是轴对称图形么?为什么?他们不是一样的吗?
4、出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?
如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?
如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?
指名到黑板上量长方形的边,取中点。
学生说怎样画对称轴,教师画,画成如右形状(图略),并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
5、让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?
三、教学“练一练”
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。
让学生独立画对称轴。
交流:各画出了几条对称轴?你是怎样想的?
先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?
再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学例5
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出四个对应的顶点再连线)
五、课堂总结
提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?
六、课堂作业
1、课堂作业:《补充习题》第3页。
2、家庭作业:《伴你学》第3页。
板书设计:
轴对称图形
图形是否为轴对称图形对称轴条数
任意三角形否0
等腰三角形是1
等边三角形是3
等腰梯形是1
平行四边形否0
长方形是2
正方形是4
圆是无数条
优秀八年级数学教案人教版篇2
【教学目标】:
1、知识与技能:
1.三角形全等的条件:角边角、角角边.
2.三角形全等条件小结.
3.掌握三角形全等的“角边角”“角角边”条件.
4.能运用全等三角形的条件,解决简单的推理证明问题.
2、过程与方法:
1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程.
2.掌握三角形全等的“角边角”“角角边”条件.
3.能运用全等三角形的条件,解决简单的推理证明问题.
3、情感态度与价值观:
通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神
【教学情景导入】:
提出问题,创设情境
复习:
(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:
①定义;
②SSS;
③SAS.
2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
导入新课
[师]三角形中已知两角一边有几种可能?
[生]1.两角和它们的夹边.
2.两角和其中一角的对边.
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
学生活动:自己动手操作,然后与同伴交流,发现规律.
教师活动:检查指导,帮助有困难的同学.
活动结果展示:
以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.
提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?
[生]能.
学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.
[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.
②画线段A′B′,使A′B′=AB.
③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.
④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.
将△A′B′C′与△ABC重叠,发现两三角形全等.
[师]
于是我们发现规律:
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).
这又是一个判定三角形全等的条件. [生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?
[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.
【教学过程设计】:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
于是得规律:
两个角和其中一角的对边对应相等的'两个三角形全等(可以简写成“角角边”或“AAS”).
[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.
学生写出证明过程.
证明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.
学生活动:自我回忆总结,然后小组讨论交流、补充.
有五种判定三角形全等的条件.
1.全等三角形的定义
2.边边边(SSS)
3.边角边(SAS)
4.角边角(ASA)
5.角角边(AAS)
推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.
练习:图中的两个三角形全等吗?请说明理由.
答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.
【课堂作业】 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?
小亮的思考过程如下.
△AOB≌△DOC
2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )
A.AB=A′B′ AC=A′C′ BC=B′C′
B.∠A=∠A′ ∠B=∠B′ AC=A′C′
C.AB=A′B′ AC=A′C′ ∠A=∠A′
D.AB=A′B′ BC=B′C′ ∠C=∠C′
3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )
A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′
4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′
5、两个三角形全等,那么下列说法错误的是( )
A.对应边上的三条高分别相等; B.对应边的三条中线分别相等
C.两个三角形的面积相等; D.两个三角形的任何线段相等
6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.
优秀八年级数学教案人教版篇3
一、教学目标
1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2.会进行简单的二次根式的除法运算;
3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4、培养学生利用二次根式的除法公式进行化简与计算的能力;
5、通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;
6、通过分母有理化的教学,渗透数学的简洁性、
二、教学重点和难点
1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.
2.难点:二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节
内容可引导学生自学,进行总结对比.
四、教学手段
利用投影仪.
五、 教学过程
(一)引入新课
学生回忆及得算数平方根和性质:( a ≥0 ,b ≥0)是用什么样的'方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根.
一般地,有( a ≥0 ,b >0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.
引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.
例1?化简:
(1);(2);(3);
解∶(1)
(2)
(3)
说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数、
例2?化简:
(1);(2);
解:(1)
(2)
让学生观察例题中分母的特点,然后提出,的问题怎样解决?
再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决、
学生讨论本节课所学内容,并进行小结.
(三)小结
1.商的算术平方根的性质.(注意公式成立的条件)
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
(四)练习
1.化简:
(1);(2);(3)、
2.化简:
(1);(2);(3)
六、作业
教材P.183习题11.3;A组1.
七、 板书设计
优秀八年级数学教案人教版篇4
教学目的
使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。
重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。
难点:比较复杂图形,灵活应用三角形外角的性质。
教学过程
一、复习提问
1.三角形的内角和与外角和各是多少?
2.三角形的外角有哪些性质?
二、新授
例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数。
分析:由已知条件可得∠B=2∠A,∠C=3∠A所以可以根据三角形的内角和等于180°来解决。
做一做:如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46°
A
BDEA
(1)你会求∠DAE的度数吗?与你的同伴交流。
(2)你能发现∠DAE与∠B、∠C之间的关系吗?
(2)若只知道∠B-∠C=20°,你能求出∠DAE的度数吗?
分析:(1)∠DAE是哪个三角形的内角或外角?
(2)在△ADE中,已知什么?要求∠DAE,必需先求什么?
(3)∠AED是哪个三角形的外角?
(4)在△AEC中已知什么?要求∠AEB,只需求什么?
(5)怎样求∠EAC的度数?
三、巩固练习
1.如图,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分线,求∠ADC,∠ADB的度数。
2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各内角的度数。
四、小结
三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。
优秀八年级数学教案人教版篇5
一、 教学目标
知识与技能目标:能够说出多边形的内角和公式并会运用
过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。
情感态度与价值观目标:养成实事求是的科学态度。
二、 教学重难点
教学重点:多边形的内角和公式
教学难点:多边形内角和公式
三、 教学方法
讲解法、练习法、分小组讨论法
四、 教学过程
结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、
生成新知、深化新知、巩固新知、小结作业。
1. 导入新知
首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的
内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。
通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。
2. 生成新知
接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此
得出四边形的内角和是2个三角形的内角和,即2__180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3__180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180__(n-2)。
验证:七边形验证
在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。
3. 深化新知
再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求
内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。
本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。
4. 巩固提高
我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,
我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。
我会在PPT上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。
5. 小结作业
先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。