初三数学复习考点
自信心下妙笔生花,好状态下能力挥洒。沉着应对万事俱备,人中才子舍我其谁。冲刺考场发挥超常,全心投入毕露锋芒。祝你马到成功,金榜题名,中考必胜!下面是小编给大家带来的初三数学复习考点,欢迎大家阅读参考,我们一起来看看吧!
初三数学复习资料
2020年初三数学复习资料
因式分解的方法
1.十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。
2.提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
【篇二】2020年初三数学复习资料
轴对称知识点
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。
13.直角三角形中,30角所对的直角边等于斜边的一半。
不等式
1.掌握不等式的基本性质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac
2.比较大小:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式两边同时乘以分母的最小公倍数。
②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。
③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。
⑤系数化为1。
2.图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
3.求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。
整式
1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
2.乘法
(1)同底数幂相乘,底数不变,指数相加。
(2)幂的乘方,底数不变,指数相乘。
(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
3.整式的除法
(1)同底数幂相除,底数不变,指数相减。
(2)任何不等于零的数的零次幂为1。
分数的性质
1.分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
2.分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。
3.分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。
4.当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。
5.一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。
正负数加减法则顺口溜
正正相加,和为正。
负负相加,和为负。
正减负来,得为正。
负减正来,得为负。
其余没说,看大小。
谁大就往,谁边倒。
九年级数学复习资料
考点1:确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点3:等可能试验中事件的概率问题及概率计算
考核要求
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点4:数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点5:统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点6:平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点7:中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点8:频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点9:中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
初三数学复习资料人教版
【篇一】
一、能正确理解实数的有关概念
我们已经知道整数和统称为.并规定无限不循环是无理数,这样我们把有理数和无理数统称为实数,即实数这个大家庭里有有理数和无理数两大成员.学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数.
二、正确理解实数的分类
实数的分类可从两个角度去思考,即(1)按定义来分类;(2)按正、来分类.但要注意0在实数里也扮演着重要角色.我们通常把正实数和0合称为非负数,把负实数和0合称为非正数.
三、正确理解实数与数轴的关系
实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数.数轴上的任一点表示的数,是有理数,就是无理数.
在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,绝对值大的反而小.
四、熟练掌握实数的有关性质
实数和有理数一样也有许多的重要性质.具体地讲可从以下几方面去思考:
1,相反数实数a的相反数是-a,0的相反数是0,具体地,若a与b互为相反数,则a+b=0;反之,若a+b=0,则a与b互为相反数.
2,绝对值一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a的绝对值可表示就是说实数a的绝对值一定是一个非负数,
3,倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数.这里应特别注意的是0没有倒数.
4,实数大小的比较任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
5,实数的运算实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
【篇二】
1、二次根式:形如式子为二次根式;
性质:是一个非负数;
2、二次根式的乘除:
3、二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4、海伦-秦九韶公式:,S是的面积,p为.
1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.
2:配方法将方程的一边配成完全平方式,然后两边开方;
因式分解法:左边是两个因式的乘积,右边为零.
1:一元二次方程在实际问题中的应用
2:韦达定理设是方程的两个根,那么有
3:一个图形绕某一点转动一个角度的图形变换
性质:对应点到中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3关于原点对称的点的坐标
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧.
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.
5点和圆的位置关系
点在圆外d>r
点在圆上d=r
点在圆内dR+r
外切d=R+r
相交R-r
【篇三】
一、圆的定义
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质
1、圆的对称性
(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
(2)切线长定理。
∵PA、PB切⊙O于点A、B
∴PA=PB,∠1=∠2。
13、内切圆及有关计算。
(1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求内切圆的半径r。
分析:先证得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。
(3)切割线定理。
如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB?PC。
(4)推论:如图,PAB、PCD是⊙O的割线,则PA?PB=PC?PD。
15、圆与圆的位置关系。
(1)外离:d>r1+r2,交点有0个;
外切:d=r1+r2,交点有1个;
相交:r1-r2
内切:d=r1-r2,交点有1个;
内含:0≤d
(2)性质。
相交两圆的连心线垂直平分公共弦。
相切两圆的连心线必经过切点。
16、圆中有关量的计算。
(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。
(2)扇形的面积用S表示。
(3)圆锥的侧面展开图是扇形。
r为底面圆的半径,a为母线长。
初三数学复习考点相关文章:
★ 数学中考考点
★ 中考考点总结