初三数学圆的考点

世平21372分享

总结就是对一个时期的工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来。下面是小编给大家带来的初三数学圆的考点,欢迎大家阅读参考,我们一起来看看吧!

初三数学圆的考点1

重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆ 内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

2.切线的.性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

初三数学圆的考点2

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

初三数学圆的考点3

1不在同一直线上的三点确定一个圆。

2垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3圆是以圆心为对称中心的中心对称图形

4圆是定点的距离等于定长的点的集合

5圆的内部可以看作是圆心的距离小于半径的点的集合

6圆的外部可以看作是圆心的距离大于半径的点的集合

7同圆或等圆的半径相等

8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12①直线L和⊙O相交 d<r< p="">

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

13切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14切线的性质定理 圆的切线垂直于经过切点的半径

15推论1 经过圆心且垂直于切线的直线必经过切点

16推论2 经过切点且垂直于切线的直线必经过圆心

17切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18圆的外切四边形的两组对边的和相等 外角等于内对角

19如果两个圆相切,那么切点一定在连心线上

20①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<dr)

④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

21定理 相交两圆的连心线垂直平分两圆的公共弦

22定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24正n边形的每个内角都等于(n-2)×180°/n

25定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27正三角形面积√3a/4 a表示边长

28如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29弧长计算公式:L=n兀R/180

30扇形面积公式:S扇形=n兀R^2/360=LR/2

31内公切线长= d-(R-r) 外公切线长= d-(R+r)

32定理 一条弧所对的圆周角等于它所对的圆心角的一半

33推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

35弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r


初三数学圆的考点相关文章:

初三数学圆的知识点和公式总结

初中数学知识点之圆

2021中考数学知识点归纳(最新完整版)

中考考点总结

初中数学中考考点归纳总结2021

2020中考数学历年高频考点归纳

数学中考考点

初中数学三年重难知识点

中考数学知识点梳理笔记2021

初中数学各年级重点最新

    37909