苏州市中考数学核心考点

俊勇21253分享

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。今天小编在这给大家整理了一些苏州市中考数学核心考点,我们一起来看看吧!

苏州市中考数学核心考点1

中考数学知识考点:平行四边形

1.两组对边平行的四边形是平行四边形.

2.性质:

(1)平行四边形的对边相等且平行;

(2)平行四边形的对角相等,邻角互补;

(3)平行四边形的对角线互相平分.

3.判定:

(1)两组对边分别平行的四边形是平行四边形:

(2)两组对边分别相等的四边形是平行四边形;

(3)一组对边平行且相等的四边形是平行四边形;

(4)两组对角分别相等的四边形是平行四边形:

(5)对角线互相平分的四边形是平行四边形.

4。对称性:平行四边形是中心对称图形.

5.平行四边形中常用辅助线的添法

1、连对角线或平移对角线

2、过顶点作对边的垂线构造直角三角形

3、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

4、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

5、过顶点作对角线的垂线,构成线段平行或三角形全等。

苏州市中考数学核心考点2

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

2.切线的性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:

内角的一半: (右图)

(解Rt△OAM可求出相关元素, 、 等)

六、 一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

七、 点的轨迹

六条基本轨迹

八、 有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、 基本图形

十、 重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

苏州市中考数学核心考点3

一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

2. 特殊角的三角函数值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余两角的三角函数关系:sin(90°-α)=cosα;…

4. 三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:

②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

苏州市中考数学核心考点4

一、平面直角坐标系

1.各象限内点的坐标的特点

2.坐标轴上点的坐标的特点

3.关于坐标轴、原点对称的点的坐标的特点

4.坐标平面内点与有序实数对的对应关系

二、函数

1.表示方法:⑴解析法;⑵列表法;⑶图象法。

2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

意义。

3.画函数图象:⑴列表;⑵描点;⑶连线。

三、几种特殊函数

(定义→图象→性质)

1. 正比例函数

⑴定义:y=kx(k≠0) 或y/x=k。

⑵图象:直线(过原点)

⑶性质:①k>0,…②k<0,…

2. 一次函数

⑴定义:y=kx+b(k≠0)

⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

⑶性质:①k>0,…②k<0,…

⑷图象的四种情况:

3. 二次函数

⑴定义:

特殊地, 都是二次函数。

⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。

⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。

4.反比例函数

⑴定义: 或xy=k(k≠0)。

⑵图象:双曲线(两支)—用描点法画出。

⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

四、重要解题方法

1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。

苏州市中考数学核心考点5

一、概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二、常用的相等关系

1.行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

+=;

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:;

2.配料问题:溶质=溶液×浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

三、注意语言与解析式的互化

如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

四注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

如,“小时”“分钟”的换算;s、v、t单位的一致等。



苏州市中考数学核心考点相关文章:

初中数学考点归纳整理

2021中考数学重点知识点归纳

中考数学知识点归纳总结2021

2021中考数学考点分析

中考数学题型考点归纳

中考数学知识点梳理笔记2021

2021中考数学考点总结归纳

2020中考数学历年高频考点归纳

2021中考数学重点知识点梳理归纳

初三数学重点难点考点归纳

    110565