九年级数学公开课教案例文

学俊21252分享

教学设计中对于目标阐述,能够体现教师对课程目标和教学任务的理解,也是教师完成教学任务的归宿。今天小编在这里整理了一些最新九年级数学公开课教案例文,我们一起来看看吧!

最新九年级数学公开课教案例文1

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

五、板书设计

最新九年级数学公开课教案例文2

一、素质教育目标

(一)知识教学点

使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

(二)能力训练点

逐步培养学生观察、比较、分析、概括的思维能力.

(三)德育渗透点

渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、教学重点、难点

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.

三、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.

(二)整体感知

只要知道三角形任一边长,其他两边就可知.

而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)重点、难点的学习与目标完成过程

正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.

若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则

引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sina<1,0<cosa<1(∠a为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.< p="">

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.

例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

学生练习1中1、2、3.

让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

例2 求下列各式的值:

为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1)sin45°+cos45; (2)sin30°•cos60°;

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即

0<sina<1, p="" 0<cosa<1(∠a为锐角).

还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”

四、布置作业

教材习题14.1中A组3.

预习下一课内容.

五、板书设计

最新九年级数学公开课教案例文3

一、素质教育目标

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.

(三)德育渗透点

培养学生独立思考、勇于创新的精神.

二、教学重点、难点

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.

三、教学步骤

(一)明确目标

1.复习提问

(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.

2.导入新课

根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.

(二)、整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.

(三)重点、难点的学习和目标完成过程

1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.

2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.

3.教师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦.

(2)把sin(90°-A)写成∠A的余弦.

这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:

(2)已知sin35°=0.5736,则cos______=0.5736.

(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.

为了配合例3的教学,教材中配备了练习题2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.

教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.

(四)小结与扩展

1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.

2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.

四、布置作业

教材习题14.1A组4、5.

五、板书设计

最新九年级数学公开课教案例文4

一、素质教育目标

(一)知识教学点

使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点

逐步培养学生观察、比较、分析、概括等逻辑思维能力.

(三)德育训练点

培养学生良好的学习习惯.

二、教学重点、难点

1.重点:“正弦和余弦表”的查法.

2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.

三、教学步骤

(一)明确目标

1.复习提问

1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.

2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.

(二)整体感知

我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.

(三)重点、难点的学习与目标完成过程

1.“正弦和余弦表”简介

学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.

(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.

2)表中角精确到1′,正弦、余弦值有四位有效数字.

3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.

2.举例说明

例4 查表求37°24′的正弦值.

学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.

例5 查表求37°26′的正弦值.

学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).

解:sin37°24′=0.6074.

角度增2′ 值增0.0005

sin37°26′=0.6079.

例6 查表求sin37°23′的值.

如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.

解:sin37°24′=0.6074

角度减1′值减0.0002

sin37°23′=0.6072.

在查表中,还应引导学生查得:

sin0°=0,sin90°=1.

根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.

可引导学生查得:

cos0°=1,cos90°=0.

根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.

(四)总结与扩展

1.请学生总结

本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.

2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.

四、布置作业

预习教材中例8、例9、例10,养成良好的学习习惯.

五、板书设计

最新九年级数学公开课教案例文5

一、素质教育目标

(一)知识教学点

使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点

逐步培养学生观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

培养学生良好的学习习惯.

二、教学重点、难点和疑点

1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.

2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.

3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.

三、教学步骤

(一)明确目标

1.锐角的正弦值与余弦值随角度变化的规律是什么?

这一规律也是本课查表的依据,因此课前还得引导学生回忆.

答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).

2.若cos21°30′=0.9304,且表中同一行的修正值是 则cos21°31′=______,

cos21°28′=______.

3.不查表,比较大小:

(1)sin20°______sin20°15′;

(2)cos51°______cos50°10′;

(3)sin21°______cos68°.

学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.

3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.

(二)整体感知

已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.

(三)重点、难点的学习与目标完成过程.

例8 已知sinA=0.2974,求锐角A.

学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.

解:查表得sin17°18′=0.2974,所以

锐角A=17°18′.

例9 已知cosA=0.7857,求锐角A.

分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.

若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.

解:查表得cos38°12′=0.7859,所以:

0.7859=cos38°12′.

值减0.0002角度增1′

0.7857=cos38°13′,

即 锐角A=38°13′.

例10 已知cosB=0.4511,求锐角B.

例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.

解:0.4509=cos63°12′

值增0.0003角度减1′

0.4512=cos63°11′

∴锐角B=63°11′

为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.

2.已知下列正弦值或余弦值,求锐角A或B:

(1)sinA=0.7083,sinB=0.9371,

sinA=0.3526,sinB=0.5688;

(2)cosA=0.8290,cosB=0.7611,

cosA=0.2996,cosB=0.9931.

此题是配合例题而设置的,要求学生能快速准确得到答案.

(1)45°6′,69°34′,20°39′,34°40′;

(2)34°0′,40°26′,72°34′,6°44′.

3.查表求sin57°与cos33°,所得的值有什么关系?

此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).

(四)、总结、扩展

本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.

四、布置作业

教材复习题十四A组3、4,要求学生只查正、余弦。

五、板书设计


九年级数学公开课教案例文相关文章:

最新九年级数学教学教案例文

最新九年级数学上教案例文

最新九年级数学下册全册教案范文

最新九年级数学下教案范文

新人教版九年级数学概率教案最新范文

九年级数学教案

九年级数学树状图教案2021范文

九年级数学旋转教案5篇最新

九年级数学相似三角形作业讲评课教案5篇最新

九年级数学投影教案2021模板

    92057