中学教资2023人教版数学九年级上册教案

晓芬0分享

数学是一种自由的精神,它鼓励我们质疑传统观念,挑战现有的假设,不断追求新的知识和理解。这里给大家分享一些关于中学教资2023人教版数学九年级上册教案,供大家参考学习。

中学教资2023人教版数学九年级上册教案

中学教资2023人教版数学九年级上册教案篇1

教学目标:

1. 通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2. 能在方格纸上将简单图形旋转90。

⒊让学生欣赏美、感知美、创造美,体验成功的喜悦。

教学重点:能在方格纸上将简单图形绕固定点顺时针旋转90

教学难点:能找出旋转后的原图形.

教学过程:

一、创设情境 ,解决问题。

1、创设情境,提出问题。

师(课件出示一组图案):现在看看老师收集的这些图案漂亮吗?观察这些图案,你发现了什么?(生自由说:轴对称;四个一样的图案组成的)

师:没错,在生活中,有很多美丽的图案是由简单的图形经过旋转获得的。你们想不想试试也用一个一个简单的图形经过旋转,制作成一个美丽的图形?好,这节课我们就来探究《图形的旋转》。下面我们以第一个图为例,请你们仔细观察,这个图是怎样设计出来的?

2、操作演示,学生观察。

师:现在我们以图形A为基本图形,来旋转变出这个图形来。

师:要想旋转出这个图形,可不是件容易的事,谁想来试一试?其它同学观察,上来旋转的同学要边做边想,旋转时要注意什么?

师:谁来说说,刚才这个同学是怎么样旋转的?

全班交流,指名回答。

3、课件演示,学生观察。

(1)、在学生回答的基础上,观察课件演示旋转过程:呈现第一次旋转。

师:下面请同学们认真观察,图形A怎么样旋转得到图形B?

生:a、图形绕点O旋转

b、按顺时针方向旋转

c、旋转90度。

(2)呈现第2次和第3次旋转后 的图案

师:怎么样得到图C和图D呢?

学生回答后,教师演示旋转过程。

4、观察感悟,发现规律。

师:从图形A旋转到图形B,图形B旋转到图形C,图形C旋转到图形D的过程中,想把一个旋转现象描述清楚,应该说哪些方面?图形旋转时什么变了?什么没变?(教师根据学生的回答板书:中心、方向、度数)

师:对!要把一个旋转现象描述清楚,不仅要说清是什么在旋转,最重要的是要说清旋转围绕的点,旋转的方向,旋转多少度。

二、动手实践,亲身体验。

1、师:现在都会说了吗?好!下面请你仔细观察, 说一说这些三角形是以哪个为中心旋转的。比比看,这回谁说的最准确。(完成55页说一说的第一题。)

学生根据课件的演示,说一说。

师:大家观察这三组图形有什么发现?(用同样一个三角形旋转,旋转的中心点不一样,旋转后得到的图形也不一样。

2、转一转,说一说,完成第56页试一试的第一题。

师:同学们说得真棒,我想大家更想动手试一试吧! 请同学拿出图形,按照书上的四幅图,和同桌合作先转一转,再说一说图形A如何形成图形B。

(1)学生操作,老师巡视、指导。

(2)请同学上台演示,引导学生进行交流。

3、师:旋转在生活中应用非常广泛,同学们知道用风力发电的大风车吗?你们看,下面请同学们观察大风车中的图形(课件出示)

师:图形1绕点O顺时针旋转90度以后是哪个图形所在的位置?(课件演示,学生抢答,关键说说是怎么发现的)接着让学生填写52 页说一说的第二题。

师:就是这个图案,不能用其它方法把它旋转出来?

三、数学万花筒。

在数学世界里,我们也经常看到一些美丽的图案演示数学万花筒的三个图案,你们根据这个方法来设计一些美丽的图案吗?请同学们用学具盒里的一个图形,设计一个美丽的图案。那么我们第一步该做什么?(固定一个点作为中心点)第二步呢?(我用动作告诉学生:旋转90度)在接着一边旋转,一边把旋转后所得的图形描绘下来。大家有没有信心?小设计师们开始行动吧!

学生设计,师适当指导,然后展示。

四、归纳总结。

⑴通过这节课的学习,你有哪些体验,把你想法与同学说一说。

⑵班上交流,引发更多的同学进行反思。

中学教资2023人教版数学九年级上册教案篇2

一.学习目标

1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

二.知识导学

(一)情景导学

1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。

2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?

设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .

3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?

在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。

(二)归纳提高。

上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?

一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。

一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?

(三)典例分析

例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.

(1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

例2.当k为何值时,函数 为二次函数?

例3.写出下列各函数关系,并判断它们是什么类型的函数.

⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;

⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;

⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;

⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.

三.巩固拓展

1.已知函数 是二次函数,求m的值.

2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的值.

3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。

4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式

5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.

6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m.

⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;

⑵求当上部半圆半径为2 m时的截面面积.(π取3.14,结果精确到0.1 m2)

课堂练习:

1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。

(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .

2.写出多项式的对角线的条数d与边数n之间的函数关系式。

3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。

4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的函数关系式。

课外作业:

A级:

1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的

是 (填序号).

2.函数y=(a-b)x2+ax+b是二次函数的条件为 .

3.下列函数关系中,满足二次函数关系的是( )

A.圆的周长与圆的`半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;

C.圆柱的高一定时,圆柱的体积与底面半径的关系;

D.距离一定时,汽车行驶的速度与时间之间的关系.

4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式.

B级:

5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式.

6.某地区原有20个养殖场,平均每个养殖场养奶牛20__头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。

C级:

7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).

(1)写出y与x之间的函数关系式;

(2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?

(3)当圆的面积为5πcm2时,其半径增加了多少?

8.已知y+2x2=kx(x-3)(k≠2).

(1)证明y是x的二次函数;

(2)当k=-2时,写出y与x的函数关系式。

中学教资2023人教版数学九年级上册教案篇3

一、说课内容:

苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

二、教材分析:

1、教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:

1、从创设情境入手,通过知识再现,孕伏教学过程

2、从学生活动出发,通过以旧引新,顺势教学过程

3、利用探索、研究手段,通过思维深入,领悟教学过程

四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?

解:s=πr(r>0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x+10x (0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)

=100(x+2x+1)

= 100x+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3、为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以为零?

由例1可知,b和c均可为零.

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)+1 (2)

(3)s=3-2t (4)y=(x+3)- x

(5) s=10πr (6) y=2+2x

(8)y=x4+2x2+1(可指出y是关于x2的二次函数)

【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

(1)分别写出C关于r;V关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.

【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

(五)拓展延伸

1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

(六) 小结思考:

本节课你有哪些收获?还有什么不清楚的地方?

【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置:

必做题:

1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

五、教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以学生为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

中学教资2023人教版数学九年级上册教案篇4

教学目标

知识与技能:

能说出一元二次方程及其相关概念,能判断一个方程是否为一元二次方程。 过程与方法:

1.经历从实际问题中建立一元二次方程概念的过程,进一步体会方程是刻画现实世界数量关系的重要数学模型,发展符号感。

2.从实际情境中进一步体会方程是刻画现实世界的一个有效数学模型。

情感态度价值观:

通过本节的学习,进一步体会学习和探究一元二次方程的必要性及数学知识来源于生活,又能为生活服务,从而激发学习热情。

教学重难点

重点:一元二次方程的概念和化任意的一元二次方程为一般形式

难点:从实际问题中抽象一元二次方程的概念及字母系数一元二次方程的各项系数的确定

教学媒体

多媒体

课时安排

1课时

教学过程

一、简要回顾,方程思想

简要回顾方程知识,方程在生活中的应用,以及用方程思想解决实际问题时的大致思路:

1.把待求的量用字母表示出来;

2.把已知量与未知量放在同等地位进行运算;

3.寻求建立等量关系

4.解方程(组)

体会感悟:往往解决一个未知数的问题,就需要建立一个等量关系;解决两个未知数的问题,则需要建立两个等量关系。……

二、展示素材,创设情境

1.某校要在校园内墙边的空地上修建一个平面图为矩形的存车处,要求存车处的一面靠墙(墙长15m,如图中AB所示),另外三面用90m的铁栅栏围起来,并在与AB垂直的一边上开一道2m宽的门。如果矩形存车处的面积为480m2,请以矩形一边长为未知数列方程。

提问:题中有哪些等量关系?如何设未知数?

学生活动:小组讨论,回答上述问题。然后根据题意,列出方程。

师:让每个小组说出他们所列的方程,对出现的问题进行更正

提问:你们列的方程一样么?为什么?将所列的方程进行整理看看现在结果一样么? 学生整理得出两个方程分别为:x2-92x+960=0和x2-46x+240=0

提问:x2-92x+960=0和x2-46x+240=0这两个方程有什么相同之处?

学生小组讨论片刻,说出自己的认识,如都是整式方程,都含有一个未知数,未知数的最高次都是2等。

2.某住宅小区准备开辟一块面积为600m2的矩形绿地,要求长比宽多10m,设绿地宽为xm,请你列出关于x的方程。

3.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

由勾股定理可知,滑动前梯子底端距墙_________m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙_______________m。根据题意,可得方程 ___________________________。

及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。

三、观察归纳,抽象命名

从上面的几个素材中可以看出,这类方程在生活中大量出现,上面的方程都是只含有一个未知数x的整式方程,并且都可以化为ax?bx?c?0(a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。

一元二次方程的一般形式:ax2+bx+c=0(a,b,c为常数,a不等于0)

其中ax2是二次项,bx是一次项,c常数项

a为:二次项系数;b为:一次项系数

四、巩固练习

1.自己编拟一元二次方程,并指出其中的二次项系数、一次项系数和常数项。

2.课本P32 练习1、2

五、小结

学生回忆总结本节课学了哪些知识?有什么体会?

六、作业

课本P32 习题1、2、3

七、板书设计

中学教资2023人教版数学九年级上册教案篇5

一、教学目标:

1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。

2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。

3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。

二、教学重难点:

1、重点---会利用配方法熟练解一元二次方程。

2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。

三、教学过程

(一)活动1:提出问题

要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。

师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。

(二)活动2:温故知新

1.填上适当的数,使下列各式成立,并总结其中的规律。

(1)x+ 6x+ =(x +3 )

(2) x+8x+ =(x+ )

(3)x2-12x+ =(x- )2

(4) x2- 5x+ =(x- )2

(5)a2+2ab+ =(a+ )2

(6)a2-2ab+ =(a- )2

2.用直接开平方法解方程:x2+6x+9=2

设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。

(三)活动3:自主学习

自学课本P31---P32思考下列问题:

1.仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?

2.怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)

3.讨论:在框图中第二步为什么方程两边加9?加其它数行吗?

4.什么叫配方法?配方法的目的是什么?

5.配方的关键是什么?交流与点拨:

重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。

注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。

设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想

(四)活动4:例题学习

例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。

交流与点拨:用配方法解一元二次方程的一般步骤:

(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)

(2)移项,使方程左边只含有二次项和一次项,右边为常数项。

(3)配方,方程两边都加上一次项系数一半的平方。

(4)原方程变为( mx+n)2=p的形式。

(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。

(五)课堂练习:

1.教材P34练习1(做在课本上,学生口答)

2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。

设计意图:通过练习加深学生用配方法解一元二次方程的方法。

四、归纳与小结:

1.理解配方法解方程的含义。

2.要熟练配方法的技巧,来解一元二次方程,

3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。

4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。

五、布置作业

教材P42习题22.2第3题

---教后反思

通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。

1、学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:

①化二次项系数为1;

②移常数项到方程右边;

③方程两边同时配上一次项系数一半的平方;

④化方程左边为完全平方式;

⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固

2、教学方法上的几点体会:

①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。

②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。

3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:

①二次项系数没有化为1就盲目配方;

②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);

④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。

4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。

5、在我本节课的教学当中,也有如下不妥之处:

①对不同层次的学生要求程度不适当;

②在提示和启发上有些过度;

③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

    850673