九年级数学优质课教案例文

学俊21252分享

教学过程,即教师的教和学生的学相互统一的活动过程,也是教师对学生的学习进行引导的活动过程。今天小编在这里给大家分享一些有关于九年级数学优质课教案最新例文,希望可以帮助到大家。

九年级数学优质课教案最新例文1

第1章反比例函数

1.1反比例函数

教学目标

【知识与技能】

理解反比例函数的概念,根据实际问题能列出反比例函数关系式.

【过程与方法】

经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.

【情感态度】

培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.

【教学重点】

理解反比例函数的概念,能根据已知条件写出函数解析式.

【教学难点】

能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

教学过程

一、情景导入,初步认知

1.复习小学已学过的反比例关系,例如:

(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)

2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?

【教学说明】对相关知识的复习,为本节课的学习打下基础.

二、思考探究,获取新知

探究1:反比例函数的概念

(1)一群选手在进行全程为3000米的_比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.

(2)利用(1)的关系式完成下表:

(3)随着时间t的变化,平均速度v发生了怎样的变化?

(4)平均速度v是所用时间t的函数吗?为什么?

(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

【教学说明】教师组织学生讨论,提问学生,师生互动.

三、运用新知,深化理解

1.见教材P3例题.

2.下列函数关系中,哪些是反比例函数?

(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

(2)压强p一定时,压力F与受力面积S的关系;

(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.

解:

(1)a=12/h,是反比例函数;

(2)F=pS,是正比例函数;

(3)F=W/s,是反比例函数;

(4)y=m/x,是反比例函数.

3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.

4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

(1)求p与V的函数关系式,并指出自变量的取值范围.

(2)求V=9m3时,二氧化碳的密度.

解:略

5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.

【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.

四、师生互动、课堂小结

先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

课后作业

布置作业:教材“习题1.1”中第1、3、5题.

教学反思

学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

九年级数学优质课教案最新例文2

教学目标

1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点

重点:会用配方法解一元二次方程.

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程

(一)复习引入

1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

(二)创设情境

现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?

怎样解这类方程:2x2-4x-6=0

(三)探究新知

让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。

(四)讲解例题

1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知

课本P.15,练习。

(六)课堂小结

1、用配方法解一元二次方程的基本步骤是什么?

2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解

一元二次方程的算法。

(七)思考与拓展

不解方程,只通过配方判定下列方程解的

情况。

(1)4x2+4x+1=0;(2)x2-2x-5=0;

(3)–x2+2x-5=0;

[解]把各方程分别配方得

(1)(x+)2=0;

(2)(x-1)2=6;

(3)(x-1)2=-4

由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

九年级数学优质课教案最新例文3

教学目标

1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

2、会用配方法解二次项系数为1的一元二次方程。

重点难点

重点:会用配方法解二次项系数为1的一元二次方程。

难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。

教学过程

(一)复习引入

1、a2±2ab+b2=?

2、用两种方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)创设情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。

(四)讲解例题

例1(课本P.11,例5)

[解](1)x2+2x-3(观察二次项系数是否为“l”)

=x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的平方,再减去这个数,使它与原式相等)

=(x+1)2-4。(使含未知数的项在一个完全平方式里)

用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

例2引导学生完成P.11~P.12例6的填空。

(五)应用新知

1、课本P.12,练习。

2、学生相互交流解题经验。

(六)课堂小结

1、怎样将二次项系数为“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步骤是什么?

(七)思考与拓展

解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

说一说一元二次方程解的情况。

[解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

(2)用配方法可解得x1=x2=-。

(3)用配方法可解得x1=,x2=

一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

课后作业

课本习题

教学后记:

九年级数学优质课教案最新例文4

考标要求:

1体会因式分解法适用于解一边为0,另一边可分解为两个一次因式的乘积的一元二次方程;

2会用因式分解法解某些一元二次方程。

重点:用因式分解法解一元二次方程。

难点:用因式分解把一元二次方程化为左边是两个一次二项式相乘右边是零的形式。

一填空题(每小题5分,共25分)

1解方程(2+x)(x-3)=0,就相当于解方程()

A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0

2用因式分解法解一元二次方程的思路是降次,下面是甲、乙两位同学解方程的过程:

(1)解方程:,小明的解法是:解:两边同除以x得:x=2;

(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0

其中正确的是()

A小明B小亮C都正确D都不正确

3下面方程不适合用因式分解法求解的是()

A2-32=0,B2(2x-3)-=0,,D

4方程2x(x-3)=5(x-3)的根是()

Ax=,Bx=3C=,=3Dx=

5定义一种运算“※”,其规则为:a※b=(a+1)(b+1),根据这个规则,方程x※(x+1)=0的解是()

Ax=0Bx=-1C=0,=-1,D=-1=-2

二填空题(每小题5分,共25分)

6方程(1+)-(1-)x=0解是=_____,=__________

7当x=__________时,分式值为零。

8若代数式与代数式4(x-3)的值相等,则x=_________________

9已知方程(x-4)(x-9)=0的解是等腰三角形的两边长,则这个等腰三角形的周长=_______.

10如果,则关于x的一元二次方程a+bx=0的解是_________

三解答题(每小题10分,共50分)

11解方程

(1)+2x+1=0(2)4-12x+9=0

(3)25=9(4)7x(2x-3)=4(3-2x)

12解方程=(a-2)(3a-4)

13已知k是关于x的方程4k-8x-k=0的一个根,求k的值。?

14解方程:-2+1=0

15对于向上抛的物体,在没有空气阻力的情况下,有如下关系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(为方便起见,本题中g取10米/),t是抛出后所经过的时间。

如果将一物体以每秒25米的初速向上抛,物体多少秒后落到地面

九年级数学优质课教案最新例文5

教学目标

1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引导学生体会“降次”化归的思路。

重点难点

重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。

教学过程

(一)复习引入

1、判断下列说法是否正确

(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();

(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();

(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),

若(x+3)(x-6)=0,则x+3=0或x-6=0();

(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),

若(x+3)(x-6)=1,则x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;

若x2=2,则x=。

答案:平方根,±,±2,±。

(二)创设情境

前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?

引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

给出1.1节问题一中的方程:(35-2x)2-900=0。

问:怎样将这个方程“降次”为一元一次方程?

(三)探究新知

让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。

(四)讲解例题

展示课本P.7例1,例2。

按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。

引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。

因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。

直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。

(五)应用新知

课本P.8,练习。

(六)课堂小结

1、解一元二次方程的基本思路是什么?

2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?

3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?

(七)思考与拓展

不解方程,你能说出下列方程根的情况吗?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根

通过解答这个问题,使学生明确一元二次方程的解有三种情况。

布置作业


九年级数学优质课教案例文相关文章:

新人教版九年级数学概率教案最新范文

九年级数学树状图教案2021范文

九年级数学相似三角形作业讲评课教案5篇最新

初中数学课堂教学3篇

2021一年级数学优质课教案例文

九年级数学投影教案2021模板

高三数学优质课教案5篇最新

九年级教师复习的最新教案参照五篇

九年级数学教学反思5篇

九年级数学教师教学经验总结最新版

    117300