安徽九年级中考数学考点
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。今天小编在这给大家整理了一些安徽九年级中考数学考点,我们一起来看看吧!
安徽九年级中考数学考点
一、轴对称与轴对称图形:
1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上.
注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:(1)等边三角形的三个角都相等,并且每个角都等于60°;
(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。
判定定理:有一个角是60°的等腰三角形是等边三角形。
说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。
二、中心对称与中心对称图形:
1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:(1)关于中心对称的两个图形是全等形;
(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;
(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
九年级中考数学考点分析
知识点1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
知识点7:圆的基本性质
1、半圆或直径所对的圆周角是直角。
2、任意一个三角形一定有一个外接圆。
3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、在同圆或等圆中,相等的圆心角所对的弧相等。
5、同弧所对的圆周角等于圆心角的一半。
6、同圆或等圆的半径相等。
7、过三个点一定可以作一个圆。
8、长度相等的两条弧是等弧。
9、在同圆或等圆中,相等的圆心角所对的弧相等。
10、经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1、直线与圆有公共点时,叫做直线与圆相切。
2、三角形的外接圆的圆心叫做三角形的外心。
3、弦切角等于所夹的弧所对的圆心角。
4、三角形的内切圆的圆心叫做三角形的内心。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、垂直于半径的直线是圆的切线。
8、圆的切线垂直于过切点的半径。
九年级中考数学考点
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如=x,=│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看;
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根([a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴(—幂,乘方运算)。
①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)。
⑵零指数:=1(a≠0)。
负整指数:=1/(a≠0,p是正整数)。