长春市中考数学考点梳理

俊勇21253分享

数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果。今天小编在这给大家整理了一些长春市中考数学考点梳理,我们一起来看看吧!

长春市中考数学考点梳理

长春市中考数学考点梳理

一、圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

中考数学考点梳理

一、锐角三角函数

正弦等于对边比斜边

余弦等于邻边比斜边

正切等于对边比邻边

余切等于邻边比对边

正割等于斜边比邻边

二、三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

泰勒展开式(幂级数展开法)

f(x)=f(a)+f'(a)/1!_(x-a)+f''(a)/2!_(x-a)2+...f(n)(a)/n!_(x-a)n+...

三、解直角三角形

1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方

四、利用三角函数测高

1、解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

(2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

中考数学考点

知识点1.概念

把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.

(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.

(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.

知识点2.比例线段

对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.

知识点3.相似多边形的性质

相似多边形的性质:相似多边形的对应角相等,对应边的比相等.

解读:(1)正确理解相似多边形的定义,明确“对应”关系.

(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.

知识点4.相似三角形的概念

对应角相等,对应边之比相等的三角形叫做相似三角形.

解读:(1)相似三角形是相似多边形中的一种;

(2)应结合相似多边形的性质来理解相似三角形;

(3)相似三角形应满足形状一样,但大小可以不同;

(4)相似用“∽”表示,读作“相似于”;

(5)相似三角形的对应边之比叫做相似比.

知识点5.相似三角的判定方法

(1)定义:对应角相等,对应边成比例的两个三角形相似;

(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.

(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.

(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.

知识点6.相似三角形的性质

(1)对应角相等,对应边的比相等;

(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.

(4)射影定理


长春市中考数学考点梳理相关文章:

2021中考数学考点分析

初中数学考点归纳整理

2020中考数学复习指导:中考数学重要考点归纳

2021中考数学重点知识点梳理归纳

中考数学题型考点归纳

2021中考数学知识点归纳(最新完整版)

中考数学的知识点整理2021

数学中考知识点归纳整理2021

中考数学知识点归纳总结整理

中考重要数学知识点整理2021

    160141