高中数学解题思路
建立高三数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。以下是小编整理的高中数学解题思路,希望可以提供给大家进行参考和借鉴。
高中数学解题思路
1、函数
函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3.初等函数
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4.选择与填空中的不等式
选择与填空中出现不等式的题目,优选特殊值法;
5.参数的取值范围
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6.恒成立问题
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7.圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8.曲线方程
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9.离心率
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10.三角函数
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11.数列问题
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12.立体几何问题
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13.导数
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14.概率
概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
15.换元法
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16.二项分布
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17.绝对值问题
绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
18.平移
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19.中心对称
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
学数学注意事项
重视改错,错不重犯
一定要重视改错工作,做到错不再犯。初中数学教学采取的方法是,把各种可能的错误,都告诉学生注意,只要有一人出过错,就要提出来,让全体同学引为借鉴。这叫“一人有病,全体吃药。”
高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能“谁有病,谁吃药”。如果学生“有病”,而自己却又忘记吃药,那么没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处“地雷”,迟早要惹祸。
有的学生认为,自己考试成绩上不去,是因为自己做题太粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果新司机真正掌握了这一套,请问,可以同意他开车上街吗?恐怕他自己也知道自己还缺乏练习。
高中数学提分窍门
1、整理数学笔记,学习数学需要技巧,老师在教学的过程中,会告知学生如何对每一道题目进行计算,学生要结合自己的计算方式进行相应知识的积累。
数学知识需要长时间积累才能懂得其中的技巧,学生要根据老师教学的方式和自己的理解,进行数学知识技巧的记录。
2、调整好自己的状态,将数学试卷当成自己课余时间的兴趣爱好。上数学课的时候,学生要认真听讲,下课的时候,学生要学会巩固自己上课学习的知识,并进行相应数学知识的测试,得知自己对上节课数学知识的了解程度。
3、整体数学试卷上的错题,不懂就问。数学试卷上经常出现的错题,是学生需要巩固自身的基础知识,学生要学会主动积累错题,并根据难易程度进行相应的分类,遇到不会的题型,学生要主动询问老师。
高中必背的数学公式
(一)两角和公式
1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(二)倍角公式
1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA
(三)半角公式
1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
(四)和差化积
1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(五)几何体表面积和体积公式
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)
3、正方体:表面积:S=6a2,体积:V=a3(a-边长)
4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)
5、棱柱:体积:V=Sh(S-底面积,h-高)
6、棱锥:体积:V=Sh/3(S-底面积,h-高)
7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)
8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)
9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)
10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)
11、直圆锥:V=πr^2h/3(r-底半径,h-高)
12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)
13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)
14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)
15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)
16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)