七年级上册数学教案案

晓芬0分享

代数是数学中一个重要的分支,研究数学对象之间的关系和运算,通过符号和方程来表达和解决问题。这里给大家分享一些关于七年级上册数学教案案,供大家参考学习。

七年级上册数学教案案

七年级上册数学教案案(篇1)

教学内容:

人教版七年级上册3.1.1一元一次方程

教学目标:

知识与技能:

1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用

新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,

认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:

建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:

根据具体问题中的相等关系,列出方程。

教学准备:

多媒体教室,配套课件。

教学过程:

设计理念:

数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念

师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20_年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25

师:同学们想学会这个魔术吗?生:想!

师:通过这节课的学习,同学们一定能学会!

一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。

二、突出主题,突出主体

1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,

(2)长方形的的长为a,宽比长少5,周长为36,则=36

(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180

师:这些式子小学学习过,它们是()?生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。

2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到验证的方法吗?

师:在阅读P/80例题1时老师做出友情提示:

(1)选择一个未知数x

(2)对于这三个问题,分别考虑:

用含x的未知数分别表示正方形的边长;

用含x的未知数表示这台计算机的检修时间;

用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程

学生讨论出上述答案后

师:大屏幕显示上述问题的答案

以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!

三、体现新时代教师是学生学习的合作者

在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)(1)方程两边表示的是同一个数;

(2)左右两边表示的方法不同。

这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础

四、给学生一个展示自己精彩的舞台

师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

设任意框出的四个数字的第一个为x,则:

生1:x+(x+1)+(x+7)+(x+8)=24;

生2:x+(x+1)+(x+7)+(x+8)=84

师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!

五、我的课堂,我做主,我来说

生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;

生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;

生3:我会检查一个数值是不是方程的解;

生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!

生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!

师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!

课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!

六、基础巩固与知识延伸

(1)基础练习见同步练习册

(2)拓展练习如下;

1、下列四个式子中,是一元一次方程的是()

A.1+2+3+4>8B.2x3C.x=1

D.|10.5x|=0.5yE、

2、已知关于x的方程ax+b=c的解是x=1,则=

3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!

作业设计也一改从前,千篇一律,本节课后作业分出了层次,也体现了趣味性和挑战性,激发了学生的求知欲!

七、课后反思:

数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的`说教有效得多。

七年级上册数学教案案(篇2)

教学目标

1. 会把有理数的加减法混合运算统一为加法运算;

2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;

3.进一步感悟“转化”的思想.

教学重点

把有理数的加减法混合运算统一为加法运算.

教学难点

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.

教学过程

根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.

1.完成下列计算:

(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).

归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;

(2)式统一成加法是________________________________;

省略负数前面的加号和( )后的形式是______________________;

读作____________________ 或 _______________________.

展示交流

1.把下列运算统一成加法运算:

(1)(-12)+(-5)-(-8)-(+9)=_____________________________;

(2)(-9)-(+5)-(-15)-(+9)=_____________________________;

(3) 2+5-8=_________________________________;

(4) 14-(-12)+(-25)-17=_____________________________________.

2. 将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

(2)(-12)+(-8)=_________________________________;

(3)(-9)+(-5)+(+15)+(-20)= ____________________________.

3.将下列运算先统一成加法,再省略加号:

(-15)-(+63)-(-35)-(+24)+(-12)=_________________________

=_________________________.

4. 仿照本P37例6,完成下列计算:

(1) -4-5+6 ; (2) -23+41-24+12-46.

5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?

盘点收获

个案补充

课堂反馈

1.计算:

2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?

迁移创新

一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?

课堂作业

本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .

七年级上册数学教案案(篇3)

学习目标:

1.理解有理数加法意义

2.掌握有 理数加法法则,会正确进行有理数加法运算

3.经历探究有理数有理数加法法则过程,学会与他人交流合作

学习重点:和 的符号的确定

学习难点:异号两数相加的法则

学法指导:

在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程

(一)课前学习导引:

1. 如果向东走5米记作+5米,那么向西走3米记作

2. 比较 大小:2 -3,-5 - 7,4

3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=

(二)课堂学习导引

正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是

(1)红队的净胜球数为 4+(-2) ,

(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?

现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示

①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为

②先向西走了5米,再向西走了3米,结果如何?可以表示为:

③先向东走了5米,再向西走了3米,结果呢?可以表示为:

④先向西走了5米,再向东走了3米,结果呢?可以表示为:

⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:

⑥先向西走5米,再向东走5米,结果呢?可以表示为:

从以上几个算式中总结有理数加法法则:

(1)、同号的两数相加,取 的符号,并把 相加.

(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值. 互为相反数的 两个数相加得 .

(3)、一个数同0相加,仍得 。

例1 计算(能完成吗,先自己动动手吧!)

(-3)+( -9) (2)(-4.7)+3.9

例2 足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。

解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。

三场比赛中,

红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;

黄队共进2球,失4球,净胜球数为(+2)+(4)= (4

蓝队共进( )球,失( )球, 净胜球数为 = 。

(三)课堂检测导引:

(1)(-3)+(-5)= ; (2)3+(-5)= ;

(3)5+(-3)= ; (4)7+(-7)= ;

(5)8+(-1)= ; (6)(-8)+1 = ;

(7)(-6)+0 = ; (8)0+(-2) = ;

(四)课堂学习小结

1.本节课中你学到了什么知识?

2.你觉得有理数加法比较难掌握的是哪里?

(五)学后拓延导引

1.计算:

(1)(-13)+(-18); (2)20+(-14);

(3)1.7 + 2.8 ; (4)2.3 + (-3.1);

(5) (- )+(- ); (6)1 +(-1.5 );

(7)(-3.04)+ 6 ; (8) +(- ).

2.判断题:

(1)两个负数的和一定是负数; ( )

(2)绝对值相等的两个数的和等于零; ( )

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. ( )

3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.

七年级上册数学教案案(篇4)

教学目标

1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;

2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。

重点深化对正负数概念的理解。

难点正确理解和表示指定方向变化的量,表示相反意义的量。

教学过程

一、创设情景

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。

温度计上的-2,0,3分别表示是么意义?

二、自主探究

(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

(2)20_年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家20_年商品进出口总额的增长率。

七年级上册数学教案案(篇5)

〔教学目标〕

1、了解负数的产生是生活、生产的需要;

2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;

3、理解具有相反意义的量的含义;

4、熟练地运用正、负数描述现实世界具有相反意义的量;

5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。

〔重点难点〕

正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。

〔教学过程〕

一、负数的引入

我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?

3.20_年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?

上面三个问题中,哪些数的形式与以前学习的数有区别?

数-3、-2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。

像3、2、2.7%这样大于零的数叫做正数;像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,?就是3、2、0.5、1/3,?。

这样,一个数由两部分组成,数前面的“+”“-”号叫做它的符号,后面的部分叫做这个数的绝对值。

请你指出数-3.2,5,-2/3的符号和绝对值。

二、对数“0”的重新认识

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?数0既不是正数,也不是负数,它是正数和负数的分界。

我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

三、用正负数表示相反意义的量

把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。

请大家看课本第3面的图1.1-2、1.1-3。

你能解释上面图中正数和负数的含义吗?

图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。

你能再举一些用正负数表示数量的实际例子吗?

通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。

四、巩固练习

五、实际问题

[投影]例(1)一个月内,小明体重增加2公斤,小华体重减少1公斤,小强体重无变化,写出他们这个月的体重增长值;

(2)20_年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%。

写出这些国家20_年进出口总额的增长率。

分析:首先我们来弄清楚增长-1是什么意思?增长-6.4%是什么意思?

增长-1表示减少1;增长-6.4%表示减少6.4%。

解:(1)这个月小明体重增长2公斤,小华体重增长-1公斤,小强体重增长0公斤。

(2)六个国家20_年商品进出口总额的增长率:

美国-6.4%,德国1.3%,

法国-2.4%,英国-3.5%,

意大利0.2%,中国7.5%。

注意:在同一个问题中,分别用正数与负数表示的量具有相反的意义。[投影3]例2“牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?

分析:“+30”是什么意思?“-30”是什么意思?

解:“500±30(mL)”表示实际容量比500mL最多多30mL,最少少30mL,即在470~530之间。抽查产品的容量都在470~530之间,所以都合格。

六、巩固练习

[投影]补充题:某药品的说明书上标明保存温度是(20±2)℃,由此可知在℃~℃范围内保存才合适。

七、课堂小结

1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。

2、正数和负数起源于表示两种相反意义的量。

3、正、负数在生产、生活和科研中有着广泛的应用。

    850622