高二数学简单的知识

文希0分享

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它是增长才干的一种好办法,让我们抽出时间写写总结吧。下面是小编为大家整理的高二数学简单的知识,欢迎参考~

向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

圆锥曲线

1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。

当 时, ; 当 时, ; 当 时, 不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式: 直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式: ,直线斜率为k,直线在y轴上的截距为b

③两点式: ( )直线两点 ,

④截矩式:

其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

⑤一般式: (A,B不全为0)

注意:各式的适用范围 特殊的方程如:

平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

(二)垂直直线系

垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系: ,直线过定点 ;

(ⅱ)过两条直线 , 的交点的直线系方程为

( 为参数),其中直线 不在直线系中。

(6)两直线平行与垂直

当 , 时,;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

相交

交点坐标即方程组 的一组解。

方程组无解 ; 方程组有无数解 与 重合

(8)两点间距离公式:设 是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点 到直线 的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程 ,圆心 ,半径为r;

(2)一般方程

当 时,方程表示圆,此时圆心为 ,半径为

当 时,表示一个点; 当 时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆 ,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当 时两圆外离,此时有公切线四条;

当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当 时,两圆内切,连心线经过切点,只有一条公切线;

当 时,两圆内含; 当 时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

平面向量

戴氏航天学校老师总结加法与减法的代数运算:

(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);

两个向量共线的充要条件:

(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .

(2) 若=(),b=()则‖b .

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,,使得= e1+ e2

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

    843599