高二数学知识点总结

文希0分享

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它是增长才干的一种好办法,让我们抽出时间写写总结吧。下面是小编为大家整理的高二数学知识点总结,欢迎参考~

高二数学知识点总结

第一章:解三角形。掌握正弦余弦公式及其变式和推论和三角面积公式即可。

第二章:数列。考试必考。等差等比数列的通项公式、前n项和及一些性质。这一章属于学起来很容易,但做题却不会做的类型。考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。

第三章:不等式。这一章一般用线性规划的形式来考察。这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。然后再根据实际问题的限制要求求最值。

选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。后面两到三问难打一般会很大,而且较费时间。所以不建议做。

这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。一般会考察用导数求最值,会用导数公式就难度不大。

不等式的性质

1.两个实数a与b之间的大小关系

2.不等式的性质

(4) (乘法单调性)

3.绝对值不等式的性质

(2)如果a>0,那么

(3)|ab|=|a||b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

不等式的证明

1.不等式证明的依据

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

2.不等式的证明方法

(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作差——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

高二数学知识点

1.不等式证明的依据

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

2.不等式的证明方法

(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作差——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向.像这样,具有方向的线段叫做有向线段.记作:.

2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.

3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.

4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.

8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.

9.单位向量:长度等于1的向量叫做单位向量.

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||.

13.数乘向量的定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.

向量的长度与方向规定为:(1)||=|

(2)当0时,与方向相同;当0时,与方向相反.

(3)当=0时,当=时,=.

14.数乘向量的运算律:(1))= (结合律)

(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

15.平行向量基本定理

如果向量,则//的充分必要条件是,存在唯一的实数,使得=.

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作.

=||,即==(,)

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=(+).

18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).

20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =.

21.向量的长度公式:若=(a1,a2),则||=.

22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.

23.中点公式

若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则

x=,y=

25.(1)两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作.

(3)向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.

(4)内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

(1)交换率

(2)数乘结合律

(3)分配律

(4)不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用:

    843579