六年级下册人教版数学优秀教案
作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?下面是小编帮大家整理的六年级下册人教版数学优秀教案,仅供参考,希望能够帮助到大家。
六年级下册人教版数学优秀教案1
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
六年级下册人教版数学优秀教案2
教学目标:
1、学生通过小组合作学习对单元知识进行概括,建立知识结构;
2、会解决实际问题;
3、归纳整理的能力及解决问题的能力;
4、积极探索、团结协作的精神,获得收获的成功感。
教学重点:运用所学知识解决实际问题。、
教学难点:归纳整理,形成知识脉络。
教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。
教学过程:
一、引发矛盾,引入课题
猜一猜:老师今年多少岁了?
[投影]老师年龄数的十位上是最小的奇数型质数,个位上的数既不是质数也不是合数。你们说老师今年多少岁了?
猜这个谜语,我们需要哪些数学知识呢?
说得有理,我们学过有关数的知识很多,就像刚才我们在猜谜时就用到了数的整除中的一些知识。今天我们就一起来整理复习数的整除,板书:数的整除复习
齐读课题,你想到什么?
那好吧,我们就开始复习。
二、梳理知识,形成脉络
1、集中呈现
现在请大家以小组为学习单位,按照你们的想法,把学过的数
的整除这部分知识整理在下发的纸上。(请大家认真讨论商量,并由组长记录)待会儿我们要比一比,看哪个小组整理的既完整,又科学合理。巡视
2、逐个梳理
1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。
2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)
3)整理完善知识结构
在数的整除这部分首先学习的是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)
组织学生汇报交流、讨论。
提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)
说得真好!这些知识之间是有密切联系的。
对于今天整理出来的数的整除脉络图,大家有什么想法?
通过整理,可以使这部分知识更加条理化、系统化。
3、自学课本,看一看还有什么不清楚的问题?
三、应用、解决问题
1、填空题
在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。
2、能同时被2、5、3整除的最小两位数是(),最大三位数是()。
3、选择题
(1)一个合数的约数有()
A) 1个B) 2个C) 3个D) 4个
(2)如果a和b是互质数,那么它们的最小公倍数是()
A) a B) b C) a b D) 1
4、判断题
(1)整除一定是除尽,除尽不一定整除。()
(2)相邻的两个自然数一定互质。()
(3)所有偶数都是合数。()
(4)24分解质因数24 = 22231 。()
(5)一个自然数的最大约数一定等于它的最小公倍数。()
5、把下面的数按照不同的标准分成两类,你能想到几种?
2 15 8 17 20
四、强化总结,拓展迁移
今天我们共同上了一节数的整除的整理与复习课,通过这节课的学习,我觉得大家特别聪明、好学,老师很高兴与大家共同渡过了这美好的40分钟,而且我们已经是多次合作,所以我想与大家做好朋友,你们愿意吗?
老师想把自己的手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?
老师的手机号码是11位数字,每一位数字依次是:
1)是质数也不是合数;
2)最小奇数与最小质数的和;
3)最小的自然数;
4)质数中最小的两个数的和;
5)既是质数,又是偶数;
6)最小质数与最小合数的积;
7)有约数2和3的一位数;
8)自然数中最小的奇数;
9)最大约数与最小倍数都是7的数;
10)所有自然数的约数;
11)最大的一位数。
同学们以后有事需要老师帮忙,随时call我。
这节课上到这里可以吗?
六年级下册人教版数学优秀教案3
教案设计
设计说明
图形的放大与缩小是比的实际应用。根据《数学课程标准》中“要培养学生的应用意识”的理念,本节课在教学设计上积极引导学生用数学的眼光看待生活中的放大与缩小现象。为学生提供充分的探索空间,培养学生的空间观念。基于以上教学理念,本节课在教学设计上有以下特点:
1.联系生活实际,体会图形放大与缩小的应用价值。
教育家卢梭认为:教学应让学生从生活中,从各种活动中进行学习,通过与生活实际相联系,获得直接经验。因此,在教学中,注重数学与生活的联系,有效利用教材中的图片,使学生了解无论是照相还是用放大镜看书、用投影仪放大图表,都离不开图形的放大与缩小知识,这部分知识有很强的实用价值。
2.在观察、操作中理解图形放大与缩小的意义和方法。
在数学教学中,让学生经历观察、操作、交流的过程,可以帮助学生获得直接的感性认识,有利于学生对知识的理解。基于以上认识,教学中,注意引导学生借助对例题的探究,弄清图形放大与缩小的意义和方法,并能在方格纸上按一定的比画出放大与缩小后的图形,使学生认识到把一个图形按一定的比放大或缩小,只要把图形的各边按一定的比放大或缩小即可。同时,也使学生认识到把一个图形按一定的比放大或缩小后,只是图形的大小改变了,形状没有发生变化,从而真正理解并掌握图形的放大与缩小的意义。
课前准备
教师准备PPT课件纸卡
学生准备方格纸
教学过程
情境导入
1.观察、感受图形的放大与缩小。
(1)观察、感受。
①出示写有“图形的放大与缩小”的纸卡。
提问:纸卡上写的是什么?
(纸卡上的字为小5号字,学生跃跃欲试后会有些失望,因为看不清)
②把纸卡放到展台上,调整缩放键,逐渐调大。
提问:纸卡上写的是什么?
生抢答:图形的放大与缩小。
(2)引导学生思考。
师:为什么纸卡上的字之前看不清,而现在看清了呢?
生:因为字被放大了。
2.结合生活实际,导入新课。
(1)过渡:生活中经常会遇到图形的放大与缩小现象,下面就让我们一起来感受一下图形的放大与缩小。
(课件出示教材59页主题图)
这些现象中,哪些是把物体放大?哪些是把物体缩小?
预设
生1:图1是把物体缩小。
生2:图2、图3、图4都是把物体放大。
(2)导入新课。
今天,就让我们从数学的角度一起来探究图形的放大与缩小现象。(板书:图形的放大与缩小)
设计意图:创设一个感受图形的放大与缩小的情境,激发学生从数学的角度探究图形的放大与缩小现象的兴趣,使学生在观察、体验中初步感知图形的放大与缩小。
探究新知
1.探究把图形放大的意义和方法。
(1)课件出示教材60页例4。
(2)思考、交流。
提问:“按2∶1放大”是什么意思?
生:“按2∶1放大”就是把图形的各边的长放大到原来的2倍。
(3)画图方法。
①提问:以正方形为例,具体画图时应该怎样做?
预设
生:正方形原来的边长是3个单位长度,现在按2∶1放大后,边长应该是6个单位长度。
②画图。
(学生独立画放大后的正方形,教师巡视指导)
(4)完成例4。
①怎样画长方形?
预设
生:把长方形的长和宽分别放大到原来的2倍,画出长方形。
②怎样画三角形?
预设
生:把直角三角形的两条直角边分别放大到原来的2倍后,连接两条直角边的端点。
(可引导学生用数方格法验证,当直角三角形的两条直角边放大到原来的2倍时,直角三角形的斜边也放大到原来的2倍)
六年级下册人教版数学优秀教案4
教学内容:
九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。
教学目标:
1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。
2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。
3、引导学生探索和解决问题,体验转化及极限的思想方法。
教学重点:
圆柱体体积的计算.
教学难点:
理解圆柱体体积公式的推导过程.
教具:
多媒体课件、圆柱形容器、水、橡皮泥。
教学过程:
一、激凝导入
师:大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?
(2)生回答。
2、出示橡皮泥捏成的圆柱体。
那你有办法求出这个圆柱体橡皮泥的体积吗?
生(热情的):老师将它捏成长方体或正方体就可以了!
3、创设问题情境。
师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)
那怎么办?
学生试说出自己的办法。
师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验、探究新知
1、推导圆柱的体积公式。
师:你们打算怎么去研究圆柱的体积?
小组同学讨论研究的方法。
2、学生动手操作感知
(1)学生以小组为单位操作体验。(操作学具,进行拼组)。
(2)学生小组汇报交流:
近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高......
(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)
3、教师课件演示圆柱转化成长方体的过程。
4、师生共同推导出圆柱的体积公式:
长方体的体积=底面积高
圆柱的体积=底圆柱面积高
V = Sh
5、巩固公式
①V、S、h各表示什么?
②知道哪些条件就可以求圆柱的体积?
а、知道底面积和高可以直接用公式计算圆柱的体积;
b、知道底面半径和高,可以先计算出底面积,再计算体积;
c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。
学生回答后师板书。
6、教学例4、例5。
课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。
三、实践练习
1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。
2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。
同学们,你们知道小林是怎样想的吗?
四、课堂总结;
通过本节课的学习,你有什么收获?
六年级下册人教版数学优秀教案5
教学目标:
1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。
3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。
重点、难点:
1.教学重点:理解、掌握杠杆平衡的规律。
2.教学难点:让学生综合应用所学的知识和方法解决实际问题。
教学准备:
竹竿,棋子,塑料袋(多媒体课件)
教学过程
一、准备材料,导入活动:
1.检查课前布置的制作工具(简单杠杆)的作业。
学生对照制作要求,自查和同组互相检查。
小黑板或媒体出示制作要求:
(1)准备的竹竿长1m,尽量做到粗细均匀。
(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。
(3)从中点处每隔8cm做一个刻度记号,尽量等距离。
拿出准备好的棋子和塑料袋。检查大小是否一样。
2.揭示课题:有趣的平衡(板书)
二、动手实践,探索规律
1.活动一:探索特殊条件下竹竿保持平衡的规律:
(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?
①学生思考,回答问题。“两边所放的棋子要同样多。”
②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。
(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?
①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”
②演示。如:
左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。
(3)小结:
你有什么体会?
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
2.活动二:探索在一般条件下竹竿保持平衡的规律(A)
(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?
①也放4个棋子行不行?会产生什么结果?
②应该放几个?
“放3个。”
(2)如果左边的塑料袋在刻度6上放1个棋子。
①右边的塑料袋在刻度3上放几个呢?
学生交流,各自说出自己的见解。
②右边的塑料袋在刻度2上呢?
学生不难得出结果,放3个。
③右边的塑料袋在刻度1上呢?
学生不难得出结果,放6个。
(3)小结:
师:你有什么体会?
左右两边棋子个数与刻度数的积要相等。
3.活动三:探索在一般条件下竹竿保持平衡的规律(B):
(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?
(2)实验活动:
①学生动手进行实验活动。
②将实验结果记录下来。
③教师提供表格,引导学生展开活动。
右刻度
所放棋子数
乘积
(3)汇报结果。
学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
(4)从表中你发现刻度数和所放棋子数成什么比例?
学生观察表中两个量的变化情况,不难发现这两种量成反比例
三、应用规律,体会揣摩
1.基本练习:
母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?
提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是_分米。可以得到方程
60_=12×15
解方程得_=3
答:她坐的地方距支点3分米才能保持平衡。
2.综合练习:
桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?
提示:(1)根据臂长和质量成反比例
(2)先确定每个托盘中所放砝码的总质量,在确定臂长。
四、回顾整理,反思提升
1.谈收获。
师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?
2.评价。
师:你对自己这节课的表现满意吗?
可采取学生自评,互评,老师评价的方式进行。
板书设计:
有趣的平衡
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
作业设计
基础:
1.用边长20厘米的方砖铺一块地,需要20__块,如果改用边长为40厘米的方砖铺地,需要多少块?
综合:
2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?
提示:
(1)可以像例题中一样,用列表的方法做。
(2)根据臂长与质量成反比,列方程求解。