高考重要的数学公式

跃瀚21373分享

书中自有黄金屋,学习能力是我们最重要的能力。学习学习再学习,是要求我们先学会学习再去学习其他知识。下面是小编给大家整理的一些高考数学公式学习资料,希望对大家有所帮助。

高考数学公式口诀第一部分

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

高考数学公式口诀第二部分

四、《数列》

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

圆的有关性质

(1)垂径定理:如果一条直线具备以下五个性质中的­任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;­⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.

(2)两条平行弦所夹的弧相等.

(3)圆心角的度­数等于它所对的弧的度数.

(4)一条弧所对的圆周角等于它所对的圆心角的一半.

(5)圆周­角等于它所对的弧的度数的一半.

(6)同弧或等­弧所对的圆周角相等.

(7)在同圆或等圆中,相等的圆周角所对的弧相等.

(8)90º的圆周角­所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦.

(9)圆内接四边形的对角互补.

定理公式

1、直线

两点距离、定比分点 直线方程

|AB|=| |

|P1P2|=

y-y1=k(x-x1)

y=kx+b

两直线的位置关系 夹角和距离

或k1=k2,且b1≠b2

l1与l2重合

或k1=k2且b1=b2

l1与l2相交

或k1≠k2

l2⊥l2

或k1k2=-1 l1到l2的角

l1与l2的夹角

点到直线的距离

2.圆锥曲线

圆 椭圆

标准方程(x-a)2+(y-b)2=r2

圆心为(a,b),半径为R

一般方程x2+y2+Dx+Ey+F=0

其中圆心为( ),

半径r

(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系

(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆

焦点F1(-c,0),F2(c,0)

(b2=a2-c2)

离心率

准线方程

焦半径|MF1|=a+ex0,|MF2|=a-ex0

双曲线 抛物线

双曲线

焦点F1(-c,0),F2(c,0)

(a,b>0,b2=c2-a2)

离心率

准线方程

焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p>0)

焦点F

准线方程

坐标轴的平移

这里(h,k)是新坐标系的原点在原坐标系中的坐标。


高考重要的数学公式相关文章:

2021年高考数学高频用到的数学公式整理

高考数学常考题型的解题思路 考生要掌握哪些公式

高中数学基本公式罗列

2021高中数学知识点总结

高一到高三数学公式和知识点归纳

2021高考数学必考知识点归纳

2021高考数学备考知识点归纳

高考数学常考难点易错点归纳

高考数学备考总复习知识点归纳

2021年高考数学高频考点热点

    39280