初三年级数学教学设计5篇
教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。下面小编给大家带来关于初三数学教学设计,方便大家学习。
初三年级数学教学设计1
在设计这节课的教学时,我自认为还比较满意:
1、从生活中来,从上学期学过的“整时”、“半时”引入,复习铺垫。
2、说说钟面上有什么,巩固时针、分针、大格、数字、小格表示的意义。
3、探究发现时针转过1大格,经过了多长时间?接着探究分针转过1小格,经过了多长时间?再探究分针转过1大格,经过了多长时间?
4、探究怎么读、写时间。
5、应用。
似乎层次很清楚,可实际教学效果很不好。失败的原因在哪儿?我认为:
1、过分强调设计的层次,变成了把知识点集中,教完一个,再教下一个,无形中又回到了“满堂灌”的误区。
2、急功近利,只重视了自己的设计是否清晰,只关心我是否能按设计完整地上完课,却忽视了最重要的——学生是具有主观能动性的`人。
3、以后我在教学中,要真正的重视预设与生成之间的差距,亲身去体会学生的真实想法,让教学真正为每个学生服务,让课堂成为人性化的课堂。
初三年级数学教学设计2
一、初中数学课堂教学的现状
1.教学方法单一
初中生的抽象思维还处于发展阶段,初中数学知识对他们来说具有一定的抽象性。因此,初中生的数学学习需要一种具体、形象、生动的情境,这样才能理解所学的内容,但是很多初中数学老师忽视了这一点,有时需要学生在明白算术原理的基础上能计算就可以,但是老师非得把算术原理用抽象的语言一遍遍重复;本来只需要初中生会分析解答应用题就可以,但是老师非得抓住几道抽象的应用题反复地向他们讲解,他们并不能理解那些抽象的语言,久而久之就会丧失对学习数学的兴趣。
2.教学模式落后
现在仍有不少初中数学教师喜欢自己一手操办课堂,完全由教师自己安排教学程序,他们为初中生的学习做好一切准备,无须学生更多的思考。教学是教与学相互作用的过程,也就是说,初中数学教学要以初中数学教材为中介,以教学课标为依据,以教学目标为指导,教师积极组织和引导学生掌握数学的知识原理,培养他们探索挑战数学难题的能力,形成健康的良好的心理品质。教师一手操作教学过程,就会使初中生处于被动的地位,不利于他们的全面发展。
二、如何实现初中数学教学的有效性
1.转变教学理念,端正教学目标
在初中数学课堂教学中,数学教师的教学目标要定位于“全面、持续、和谐地发展”,不仅要关注学生知识领域的发展,还要关注学生情感领域的进步。为此,教师要转变教学理念,改进教学方法,具体做到:变“教师主宰”为“教师主导”;变“注入式”为“启发式”;变“学生被动”为“学生主动”;变“注重知识接受”为“注重知识发现”。只有注重学生在初中数学课堂中的参与性,课堂教学效率才会有稳步提升。比如,在教学“一次函数的概念”时,先在黑板上列出两道紧贴学生生活实际的应用题,然后让学生将式子列出来,再仔细比较两个式子之间的异同点,最后引导学生归纳总结“一次函数的定义”。这样的教学让学生可以让学生经历“一般——特殊——一般”的过程,有效掌握了一次函数的概念。
2.渗透数学思想,培养学习兴趣
提高教学有效性,必须激发学生的学习兴趣。要培养学生的数学兴趣,不能仅仅依靠单纯的模仿与记忆,而是要促使学生动手实践、合作交流与自主探索。为此,在初中数学教学过程中,教师要多举一些学生身边的实例来促进教学,比如存钱的计算、树木高度的测量和土地面积的计算等。这样可以让学生懂得数学知识在日常生活中的价值,从而更加热爱数学。此外,教师还可以在数学教学中渗透符号口诀表述思想。众所周知,初中数学符号是很多的,教师可以教会学生利用简洁的口诀来表述复杂、抽象的数学道理。比如在教学“解一元一次不等式组”时,根据取值情况,可以总结为“同大取大,同小取小,大小小大取中间,小小大大取无解”。初中生的抽象逻辑思维还处于发展阶段,利用口诀教数学,可以化抽象为具体,提升教学效率。
3.推进分层教学,达到稳步提升
作为数学学习的主人,学生的地位必须得到重视。而教师是初中数学课堂的组织者和引导者。长期以来,不少教师都采取加快教学进度,压缩新课课时的做法,以此腾出更长时间来进行总复习。其实,这种做法是错误的,学习时间变短后,学生的思维就会被抑制,导致学生知识静化。要改变这种现象,教师就要推进分层教学,使学生循序渐进地提升能力。首先是数学知识分成,将分析考试命题方向与学生实际水平相结合,把分析教材知识结构与学生认识发展相结合,以此使各个层次的学生都能学习新知识。其次要做到作业分层,笔者一般会将作业分为简单、一般和较难三个层次,让不同层次的学生分别完成,这样可以让学生在完成作业的过程中体会成功的喜悦,同时也能克服抄袭现象。
三、总结
总之,在初中数学课堂上,数学老师要充分考虑到初中生的心理特点和学科特点进行教学,从实际出发,这样才能使教学效果达到事半功倍的效果。
初三年级数学教学设计3
三角形的高、中线与角平分线
〔教学目标〕
〔知识与技能〕
1、经历画图的过程,认识三角形的高、中线与角平分线;
2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.
〔过程与方法〕
在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯 〔情感、态度与价值观〕
体会数学与现实生活的联系,增强克服困难的勇气和信心
〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点. A〔教学过程〕 A
一、导入新课
我们已经知道什么是三角形,也学过三角形的高。
三角形的主要线段除高外,还有中线和角平分线值得我们BDCBCD研究。
二、三角形的高
请你在图中画出△ABC的一条高并说说你画法。
从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC于点D。
注意:高与垂线不同,高是线段,垂线是直线。
请你再画出这个三角形AB 、AC边上的高,看看有什么发现?
三角形的三条高相交于一点。
如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?
现在我们来画钝角三角形三边上的高,如图。
E C
显然,上面的结论成立。
请你画一个直角三角形,再画出它三边上的高。
上面的结论还成立。
三、三角形的中线
如图,我们把连结△ABC的顶点A和它的对边BC的中点D,所得线段AD叫做△ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.
请你在图中画出△ABC的另两条边上的中线,看看有什么发现?
三角的三条中线相交于一点。
如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。 四、三角形的角平分线
如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,表示为∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。
A
思考:三角形的角平分线与角的平分线是一样的吗? 三角形的角平分线是线段,而角的平分线是射线,是不一样的。 请你在图中再画出另两个角的平分线,看看有什么发现? BCD三角形三个角的平分线相交于一点。
如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。
想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?
三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。
五、课堂练习
课本5页练习1、2题。
六、课堂小结
1、三角形的高、中线、角平分线的概念和画法。
2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。
七作业:
课本8页3、4;
八、教后记
初三年级数学教学设计4
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:弦切角定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.
难点:弦切角定理的证明.因为在证明过程中包含了由一般到特殊的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.
2、教学建议
(1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;
(2)学习时应注意:(Ⅰ)弦切角的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用弦切角定理时,首先要根据图形准确找到弦切角和它们所夹弧上的圆周角;(Ⅲ)要注意弦切角定理的证明,体现了从特殊到一般的证明思路.
教学目标:
1、理解弦切角的概念;
2、掌握弦切角定理及推论,并会运用它们解决有关问题;
3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.
教学重点:弦切角定理及其应用是重点.
教学难点:弦切角定理的证明是难点.
教学活动设计:
(一)创设情境,以旧探新
1、复习:什么样的角是圆周角?
2、弦切角的概念:
电脑显示:圆周角CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,得BAE.
引导学生共同观察、分析BAE的特点:
(1)顶点在圆周上; (2)一边与圆相交; (3)一边与圆相切.
弦切角的定义:
顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
3、用反例图形剖析定义,揭示概念本质属性:
(二)观察、猜想
1、观察:(电脑动画,使C点变动)
观察P与BAC的关系.
2、猜想:BAC
(三)类比联想、论证
1、首先让学生回忆联想:
(1)圆周角定理的证明采用了什么方法?
(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?
2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的弦切角有无数个.
如图.由此发现,弦切角可分为三类:
(1)圆心在角的外部;
(2)圆心在角的一边上;
(3)圆心在角的'内部.
3、迁移圆周角定理的证明方法
先证明了特殊情况,在考虑圆心在弦切角的外部和内部两种情况.
组织学生讨论:怎样将一般情况的证明转化为特殊情况.
圆心O在CAB外,作⊙O的直径AQ,连结PQ,则BAC=BAQ-APQ-APC.
圆心O在CAB内,作⊙O的直径AQ.连结PQ,则BAC=QAB十QPA十APC,
(在此基础上,给出证明,写出完整的证明过程)
回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完 全归纳、从而证明了上述猜想是正确的,得:
弦切角定理:弦切角等于它所夹的弧对的圆周角. 4.深化结论.
练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.
练习2 DE切⊙O于A,AB,AC是⊙O 的弦,若=,那么DAB和EAC是否相等?为什么?
分析:由于 和 分别是两个弦切角OAB和EAC所夹的弧.而 = .连结B,C,易证B=C.于是得到DAB=EAC.
由此得出:
推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.
(四)应用
例1已知AB是⊙O的直径,AC是弦,直线CE和⊙O 切于点C,ADCE,垂足为D
求证:AC平分BAD.
思路一:要证BAC=CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证ACD=B.
证明:(学生板书)
组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.
思路二,连结OC,由切线性质,可得OC‖AD,于是有3,又由于2,可证得结论。
思路三,过C作CFAB,交⊙O于P,连结AF.由垂径定理可知3,又根据弦切角定理有1,于是3,进而可证明结论成立.
练习题
1、AB为⊙O的直径,直线EF切⊙O于C,若BAC=56,则ECA=______度.
2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的弦切角BAC=________
3、经过⊙O上的点T的切线和弦AB的延长线相交于点C.
求证:ATC=TBC.
(此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)
(五)归纳小结
教师组织学生归纳:
(1)这节课我们主要学习的知识;
(2)在学习过程中应用哪些重要的数学思想方法?
(六)作业:教材P13l习题7.4A组l(2),5,6,7题.
探究活动
一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.
提示:是圆周角(它是弦切角定理的逆命题).分三种情况证明(证明略).
初三年级数学教学设计5
《正弦和余弦(二)》
一、素质教育目标
(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.
(三)德育渗透点
培养学生独立思考、勇于创新的精神.
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.
三、教学步骤
(一)明确目标
1.复习提问
(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.
(二)、整体感知
关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.
(三)重点、难点的学习和目标完成过程
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.
3.教师板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.
已知∠A和∠B都是锐角,
(1)把cos(90°-A)写成∠A的正弦.
(2)把sin(90°-A)写成∠A的余弦.
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:
(2)已知sin35°=0.5736,则cos______=0.5736.
(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.
为了配合例3的教学,教材中配备了练习题2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.
教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.
(四)小结与扩展
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.
2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.
四、布置作业