沪科版七年级数学下册教案例文
写好教案时上好一堂课的基础。很多老师不知道怎样写教案才是合格的教案,对于新手教师来说这是一门必修的入职课程。那么应该怎么写好教案呢?今天小编在这里给大家分享一些有关于2021沪科版七年级数学下册教案,希望可以帮助到大家。
2021沪科版七年级数学下册教案例文1
教学目标: 1、使学生在现实情境中理解有理数加法的意义
2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则
重点:异号两数相加的法则
教学过程:
二、讲授新课
1、同号两数相加的法则
问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则
教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
三、巩固知识
课本P18 例1,例2、课本P118 练习1、2题
四、总结
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
五、布置作业
课本P24习题1.3第1、7题。
2021沪科版七年级数学下册教案例文2
【学习目标】
1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.
2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.
【学习重点】
利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.
【学习难点】
两个负数大小的比较.
行为提示:创景设疑,帮助学生知道本节课学什么.
行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
情景导入 生成问题
旧知回顾:
1.什么是绝对值?
答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.
2.正数、负数、0的绝对值分别是什么?
答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
自学互研 生成能力
知识模块一 用数轴比较有理数的大小
阅读教材P14~P15的内容,回答下列问题:
问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?
答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.
方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.
学习笔记:
行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是( A )
A.a>b>c B.a>c>b
C.b>c>a D.c>b>a
仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( C )
A.-aC.a<-1<-a D.a<-a<-1
仿例2:把下列各数在数轴上表示出来,并用“<”连接各数.
-1.5,-0.5,-3.5,-5.
解:将这些数在数轴上表示出来,如图:
从数轴上可看出:-5<-3.5<-1.5<-0.5.
知识模块二 用法则比较有理数的大小
阅读教材P15的内容,回答下列问题:
问题:两个负数怎样比较大小?
答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.
典例:比较大小:
(1)-2.1<1; (2)-3.2>-4.3;
(3)-12<13; (4)-14<0.
仿例1:比较-12、-13、14的大小结果正确的是( A )
A.-12<-13<14 B.-12<14<-13
C.14<-13<-12 D.-13<-12<14
仿例2:比较下列各对数的大小:
(1)-(-3)与|-2|;
解:∵-(-3)=3,|-2|=2,
∴-(-3)>|-2|; (2)-(-6)与|-6|.
解:∵-(-6)=6,|-6|=6,
∴-(-6)=|-6|.
变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6.
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 用数轴比较有理数的大小
知识模块二 用法则比较有理数的大小
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书
【课后检测】见学生用书
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.困惑:________________________________________________________________________
2021沪科版七年级数学下册教案例文3
教学目的:
(一)知识点目标:
1.了解正数和负数在实际生活中的应用。
2.深刻理解正数和负数是反映客观世界中具有相反意义的理。
3.进一步理解0的特殊意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2.熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1.认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。
2.下列说法中正确的( )
A、带有“一”的数是负数; B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6 练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1 的第3、6、7、8题。
活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
课后反思:————
2021沪科版七年级数学下册教案例文4
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、 等是正数(也可加上“十”)
-3、-2、-0.5、- 等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作
2021沪科版七年级数学下册教案例文5
一、故事引入,初步感知
[电脑出示]曹冲称象图片
曹冲用什么称出大象的重量?为什么称石头的重量就能得到大象的重量?
今天我们就来研究如何用替换的策略解决问题。[板书课题]
生活中有哪些地方是用替换来解决问题?
二、出示问题,探索运用
[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?
读题,从题目中获得哪些信息。
你是怎样理解“小杯的容量是大杯的”这句话?[电脑出示]
这里720毫升果汁既倒入6个小杯,又倒入1个大杯,要求小杯和大杯的容量,该怎么办呢?
学生说两种替换的过程。为什么要把大杯换成小杯?
四人小组合作。
要求1、画一画,选一种替换方法画出替换过程。
2、说一说,应该怎样替换,并且如何计算。
小组展示汇报。
怎样检验结果是否正确?学生口头检验。
解决这个问题时,运用的是什么方法?这里为什么要用替换的方法?
我们把两个量通过替换转化为一个量,便于我们计算。有时可以借助画图来帮助理解。
三、拓展应用,巩固策略
1、[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢?
学生独立完成。并说出想的过程。
为什么不把饼干替换成牛奶来考虑?
2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?
读题,从题目中获得哪些信息?
与例1相比,有什么不同的地方?
“每个大盒比小盒多装8个”这句话你是怎么理解的?
怎样替换?
学生独立完成并核对。
3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?
四、小结全课,优化策略