2023高中数学知识点总结及公式大全
高中数学难度在于它的深度和广度,但如果能理清思路,抓住重点,多实践,学好数学并非天方夜谭,以下是小编准备的一些2023高中数学知识点总结及公式大全,仅供参考。
高考数学知识点总结及公式大全
1、常用数学公式表
(1)乘法与因式分解
a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式
|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:X1+X2=-b/aX1__X2=c/a,注:韦达定理。
(5)判别式
1)b2-4a=0,注:方程有相等的两实根。
2)b2-4ac\u003e0,注:方程有一个实根。
3)b2-4ac\u003c0,注:方程有共轭复数根。
2、三角函数公式
(1)两角和公式
sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。
(2)倍角公式
tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式
sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))。
(4)和差化积公式
2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B);2cosAcosB=cos(A+B)-sin(A-B);-2sinAsinB=cos(A+B)-cos(A-B);sinA+sinB=2sin((A+B)/2)cos((A-B)/2;cosA+cosB=2cos((A+B)/2)sin((A-B)/2);tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB;ctgA+ctgBsin(A+B)/sinAsinB;-ctgA+ctgBsin(A+B)/sinAsinB
(5)某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1__2+2__3+3__4+4__5+5__6+6__7+…+;n(n+1)=n(n+1)(n+2)/3。
(6)正弦定理:a/sinA=b/sinB=c/sinC=2R,注:其中R表示三角形的外接圆半径。
(7)余弦定理:b2=a2+c2-2accosB,注:角B是边a和边c的夹角。
3、高中文科数学知识点口诀记忆
(1)《集合》
1)集合概念不定义,属性相同来相聚;内有子交并补集,运算结果是集合。
2)集合元素三特征,互异无序确定性;集合元素尽相同,两个集合才相等。
3)书写规范符号化,表示列举描述法;描述法中花括号,对象xy须看清。
4)数集点集须留意,点集本是实数对;元素集合讲属于,集合之间谈包含。
5)0和空集不相同,正确区分才成功;运算如果有难处,文氏数轴来相助。
(2)《常用逻辑用语》
1)真假能判是命题,条件结论很清晰;命题形式有四种,分成两双同真假。
2)若p则q真命题,p和q充分条件;q是p必要条件,原逆皆真称充要。
3)判断条件有三法,举出反例定义法;由小推大集合法,逆否命题等价法。
4)逻辑连词或且非,或命题一真即真;且命题一假即假,非命题真假相反。
5)且命题的否定式,否定式的或命题;或命题的否定式,否定式的且命题。
6)量词一般有两个,全称量词所有的;存在量词有一个,全称特称两命题。
6)全称命题否定式,特称命题肯定式;含有量词否定式,改写量词否结论。
(3)《函数概念》
1)函数结构三要素,值域法则定义域;函数形式有三法,列表图像解析法。
2)特殊函数有三种,分段组合和复合;定义域的要求多,分式分母不为0。
3)偶次方根须非负,0的次方要为正;底数非1为正数,零和负数无对数。
4)正切函数脚不直,数列序号正整数;多个函数求交集,实际意义须满足。
5)函数值域的求法,配方图像定义法;部分整体观察法,换元代入单调法。
6)分离常数判别式,均值定理不等法;怎样去求解析式,题目常考两性式。
7)抽象函数解析式,代入换元配凑法,方程思想消元法;指定类型解析式,
8)运用待定系数法。性质奇偶用单调,观察图像最美妙;若要详细证明它,
9)还须将那定义抓。组合函数单调性,判断它们有法则,增加上增等于增,
10)增减去减等于增,减加上减等于减,减减去增等于减。复合函数单调性,
11)同增异减巧判断。复合函数奇偶性,偶加减偶等于偶,奇加减奇等于奇。
12)偶加减奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。
13)周期对称两种性,观察结构最可行;内同表示周期性,内反表示对称性。
14)中心对称轴对称,函数还具周期性;函数零点方程根,图像交点横坐标;
15)函数零点有几个,画出图像看交点;两个端点都代入,相乘为负有零点。
4、文科数学必背知识点归纳与总结
(1)集合有关概念
1)集合的中元素的三个特性:
2)元素的确定性:互异性、无序性
3)集合的表示方法:列举法与描述法。
4)注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集,N__或N+整数集Z有理数集Q实数集R。
(2)集合间的基本关系
1)“包含”关系—子集,注意:BA有两种可能。A是B的一部分;A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A。
2)不含任何元素的集合叫做空集,记为Φ;规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集。
高一数学学习成绩差怎么办
一、回归课本
从高一开始,学生就应该增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。
二、记好笔记,注重课堂
学生日常在听课时要集中注意力,把老师讲的关键性部分听懂、听会。要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。
三、做好作业,讲究规范
在课堂、课外练习中,培养良好的作业习惯也很有必要。学生平常在做作业时,不但要做得整齐、清洁,还要有条理,作业独立完成,讲究效率,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。
四、写好总结,把握规律
要想学好数学,学生们应该经常做好总结,把握规律。通过与老师、学生平时的互动交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
高中数学考试答题技巧
一、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题方向。
二、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。只有重视解题过程的语言表述,会做的题才能得分。
三、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
四、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。