数学中考知识点相似形
初中数学学习要充分发挥自己的主观能动性,养成良好的数学学习习惯,进而培养思考问题、分析问题和解决问题的能力.下面是小编给大家带来的数学中考知识点相似形,欢迎大家阅读参考,我们一起来看看吧!
数学中考知识点相似形
直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。
第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。
5、相似三角形的性质:
(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
(2)相似三角形性质2:相似三角形周长的比等于相似比。
说明:以上两个性质简单记为:相似三角形对应线段的比等于相似比。
(3)相似三角形面积的比等于相似比的平方。
说明:两个三角形相似,根据定义可知它们具有对应角相等、对应边成比例这个性质。
初三数学知识点相似形
1“平行出比例”定理及逆定理:
(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例;
(1)(3) (2)
几何表达式举例:
(1) ∵DE∥BC ∴
(2) ∵DE∥BC ∴
(3) ∵ ∴DE∥BC
2.比例的基本性质: a:b=c:d Û Û ad=bc ;
3.定理:“平行”出相似
平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
几何表达式举例:
∵DE∥BC
∴ΔADE∽ΔABC
4.定理:“AA”出相似
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
几何表达式举例:
∵∠A=∠A
又∵∠AED=∠ACB
∴ΔADE∽ΔABC
5.定理:“SAS”出相似
如果一个三角形的两条边与另一个
三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
几何表达式举例:
∵
又∵∠A=∠A
∴ΔADE∽ΔABC
6.“双垂” 出相似及射影定理:
(1)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似;
(2)双垂图形中,两条直角边是它在斜边上的射影和斜边的比例中项,斜边上的高是它分斜边所成两条线段的比例中项.
几何表达式举例:
(1) ∵AC⊥CB
又∵CD⊥AB
∴ΔACD∽ΔCBD∽ΔABC
(2) ∵AC⊥CB CD⊥AB
∴AC2=AD·AB
BC2=BD·BA
DC2=DA·DB
7.相似三角形性质:
(1)相似三角形对应角相等,对应边成比例;
(2)相似三角形对应高的比,对应中线的比,对应角平分线、周长的比都等于相似比;
(3)相似三角形面积的比,等于相似比的平方.
(1) ∵ΔABC∽ΔEFG
∴
∠BAC=∠FEG
(2) ∵ΔABC∽ΔEFG
又∵AD、EH是对应中线
∴
(3) ∵ΔABC∽ΔEFG
∴
三 常识:
1.三角形中,作平行线构造相似形和已知中点构造中位线是常用辅助线.
2.相似形有传递性;即: ∵Δ1∽Δ2 Δ2∽Δ3 ∴Δ1∽Δ3
四、位似
1、位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,且每组对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
2、掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的同一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.
3、位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).
4、利用位似,可以将一个图形放大或缩小.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.
中考数学复习备考:知识点梳理之相似形
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中“对应”二字的含义;
②平行→相似(比例线段)→平行。
二、相似三角形性质
1.对应线段…;2.对应周长…;3.对应面积…。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1.“等积”变“比例”,“比例”找“相似”。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。