数学中考提分技巧
对于即将到来的中考,相信每一位考生都严阵以待,毕竟虽然中考没有高考的热度那么高,但对于学生来说也是十分重要的转折,因此小编特意为大家带来了数学中考提分技巧,希望大家喜欢。
数学中考提分技巧
1、大胆取舍——确保中考数学相对高分
“有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。”针对中考数学如何备考,数学特级老师说,这几个月的备考一定要有选择。
首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,一定要立足于基础和难易度适中,太难的可以放弃。
在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的题认真做一做,把根本没有感觉的难题放弃不做。千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精力。”
2、做到基本知识不丢一分
某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
首先要梳理知识网络,思路清晰知己知彼。思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。
其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。根据考纲和自己的实际情况来侧重复习,也能提高有限时间的利用效率。
3、做好中考数学的最后冲刺
距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。
题坚持每天一道,并及时总结方法,错题本就发挥作用了。最后每周练习一套中考模拟卷,及时总结考试问题。我们做题的原则是先搞懂搞透错题,再做新题。如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。
中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。最后要明白决定中考成败的不是题而是简单题,千万不要在难题上不舍得,做到会做的题不丢分就好,这就需要你平时做题专注用心。
4、平时养成好的答题习惯
关于中考应考技巧有几点做法:解题习惯要端正,由于是电脑阅卷,所以平时答题时就养成左对齐按列写的答题习惯;阅题习惯的养成,中考都会提前发卷,考生可利用这段时间,将试卷浏览一遍,大致了解题量、题型,了解试题的难易度,做到心中有数,通览全卷,把握全局。
答题习惯上,先易后难,合理支配答题时间。进入考场后考生特别紧张,可轻拍几下额头,做几个深呼吸,紧张的情绪就会得到缓解。
2023中考数学答题得分技巧
1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。这点很容易理解,就是我们要先做简单题,然后再做复杂题。当全部题目做完之后,如果还有时间,就再回来研究那些难题。当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。也就违背了我们的原意。
其次是“先高后低”。这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。这样能够拿到更多的总得分。并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
这里所谓的“一快一慢”指的是审题要慢,做题要快。题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。当思考出解题方法和思路之后,解答问题的时候就一定要简明扼要、快速规范。这样不仅给后面的题目赢得时间,更重要的是在保证踩到得分点上的基础上尽量简化解题步骤,可使得阅卷老师更加清晰地看出你的解题步骤。
4、把握技巧“分段得分”。
对于中考数学中的难题,并不是说只让成绩优秀的学生拿分而其他学生不得分。实际上,中考数学的大题采取的是“分段给分”的策略。简单说来就是做对一步就给一步的分。这样看来,我们确保会做的题目不丢分,部分理解的题目力争多得分。
5、检查突出重点“确保得分”。
卷子做完之后,有时间的话,要全面检查。如果时间不是很充裕,则要重点检查选择题、填空题、计算类的题目,因为这类题目稍有错误,可能一分不得,而证明题只要能证出来,一般不会出错或太大的错,得分相对有保证。当然,不是说这部分题不用检查,有时间的话,还是需要认真检查的。
中考数学提分思想策略
1、数形结合思想是说数的问题,可以通过对图形的分析来解决,形的问题也可通过对数的研究来思考。
2、分情况讨论思想就是当一个问题用统一的方法不能继续做下去的时候,需要对所研究的问题分成若干个情况分别进行研究的思想方法。
3、化归思想是说在解决实际问题时常常需要进行等价转换,把生疏的题目转化成熟悉的题目,通过特殊到一般,归纳出事物的规律,并能进行适当的变式变形。
4、函数与方程思想,就是对于有些数学问题要学会用变量和函数来思考,学会转化未知与已知的关系。
5、数学建模思想,是说在具体的问题分析中,尽量通过观察,抽象出主要的参量、参数与有关的定律、原理间建立起的某种关系。这样,一个具体的实际问题就转化为简化明了的一个数学模型。
初中生该如何学习中考数学
一、初中生数学学习存在的主要障碍
1.依赖心理。
2.急躁心理。
3.定势心理。
4.偏重结论。
二、初中生课前的数学学习方法
1.课前的预习方法:一看、二读、三做。
2.不同的知识预习方法有所不同。
(1)数学概念的学习方法:
①读概论,记住名称或符号;
②阅读背诵定义,掌握特性;
③举出正反实例,体会概念反映的范围;
④进行练习,准确地判断;
⑤与其他概念相比较,弄清概念间的关系。
(2)数学公式的学习方法:
①正确书写公式,记住公式中字母间的关系;
②懂得公式的来龙去脉,掌握推导过程;
③用数字验算公式,在公式具体化过程中体会公式中反映的规律;
④将公式进行各种变换,了解其不同的变化形式;
⑤变化公式中的字母所蕴含的内容,达到自如地应用公式。
(3)数学定理的学习方法:
①背诵定理;
②分清定理的条件和结论;
③理解定理的证明过程;
④应用定理证明有关问题;
⑤体会定理与有关定理和概念的内在关系。
提高学习的效率方法
经验一:
1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把所有的功课分成若干个部分,把每一部分限定时间,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,四十分钟就可以完成了。
2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。
3、不要整个晚上都复习同一门功课。这样做非但容易疲劳,而且效果也很差。每晚安排复习两三门功课,情况要好多了。
经验二:
如何提高学习效率呢?
最重要的一条就是劳逸结合。学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。
那么上课时的听课效率如何提高呢?
课前要有一定的预习,这是必要的,不过预习比较粗略,无非是走马观花地看一下课本,这样课本上讲的内容、重点大致在心里有个谱了,听起课来就比较有针对性。预习时,不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。
上课期间还有一个时间分配的问题,老师讲有些很熟悉的东西时,可以适当地放松一下。
另外,记笔记有时也会妨碍课堂听课效率,有时一节课就忙着抄笔记了,这样做,有时会忽略一些很重要的东西,但这并不等于说可以不抄笔记,不抄笔记是不行的,人人都会遗忘,有了笔记,复习时才有基础,有时老师讲得很多,在黑板上记得也很多,但并不需要全记,要记一些书上没有的定理定律,典型例题与典型解法,这些才是真正有价值去记的东西。否则见啥记啥,势必影响课上听课的效率,得不偿失。除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记。
经验三:
学习效率是决定学习成绩的重要因素,如何提高自己学习效率呢?
一、要自信。很多的科学研究都证明,人的潜力是很大的,但大多数人并没有有效地开发这种潜力,这其中,人的自信力是很重要的一个方面。无论何时何地,你做任何事情,有了这种自信力,你就有了一种必胜的信念,而且能使你很快就摆脱失败的阴影。相反,一个人如果失掉了自信,那他就会一事无成,而且很容易陷入永远的自卑之中。
二、学会用心。要自信。选“好题”,时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,分门别类。
中考数学知识点梳理
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα。
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考数学知识点复习口诀
1.有理数的加法运算:
同号相加一边倒;异号相加“大”减“小”,
符号跟着大的跑;绝对值相等“零”正好.
2.合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样.
3.去、添括号法则:
去括号、添括号,关键看符号,
括号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号.
4.一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.
5.平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.
5.1完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央.
5.2因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,
两项只用平方差,三项十字相乘法,阵法熟练不马虎,
四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,
五项、六项更多项,二三、三三试分组,
以上若都行不通,拆项、添项看清楚.
5.3单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,
系数进行同级(运)算,指数运算降级(进)行.
5.4一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,
两边除(以)负数时,不等号改向别忘了.
5.5一元一次不等式组的解集:
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.
6.1分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
6.2分式方程的解法步骤:
同乘最简公分母,化成整式写清楚,
求得解后须验根,原(根)留、增(根)舍,别含糊.
6.3最简根式的条件:
最简根式三条件,号内不把分母含,
幂指数(根指数)要互质、幂指比根指小一点.
6.4特殊点的坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
x轴上y为0,x为0在y轴.
象限角的平分线:
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.
平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;
直线平行于y轴,点的横坐标仍照旧.
6.5对称点的坐标:
对称点坐标要记牢,相反数位置莫混淆,
x轴对称y相反,y轴对称x相反;
原点对称记,横纵坐标全变号.
7.1自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行.
7.2函数图象的移动规律:
若把一次函数的解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式,
则可用下面的口诀
“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.
7.3一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远.
7.4二次函数的图象与性质的口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见;
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线;
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现;
横标即为对称轴,纵标函数最值见.
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.
7.5反比例函数的图象与性质的口诀:
反比例函数有特点,双曲线相背离得远;
k为正,图在一、三(象)限,k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减.
图在二、四正相反,两个分支分别增;
线越长越近轴,永远与轴不沾边.
8.1特殊三角函数值记忆:
首先记住30度、45度、60度的正弦值、余弦值的分母都是2,
正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.
三角函数的增减性:正增余减
8.2平行四边形的判定:
要证平行四边形,两个条件才能行,
一证对边都相等,或证对边都平行,
一组对边也可以,必须相等且平行.
对角线,是个宝,互相平分“跑不了”,
对角相等也有用,“两组对角”才能成.
8.3梯形问题的辅助线:
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线.
8.4添加辅助线歌:
辅助线,怎么添?找出规律是关键.
题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连;
三角形边两中点,连接则成中位线;
三角形中有中线,延长中线翻一番.
圆的证明歌:
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连.
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦.
初三数学中考知识点
一次函数的定义
一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
一次函数的性质
一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数
注:一次函数一般形式y=kx+b(k不为0)
a)k不为0
b)x的指数是1
c)b取任意实数
确定函数定义域的方法
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
用待定系数法确定函数解析式的一般步骤
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。