初二数学知识点复习

世平21372分享

奋斗不息,锲而不舍的精神是伟人最闪耀之处,这不由得让我鼓起斗志,为我们的中考鼓劲。下面是小编给大家带来的初二数学知识点复习,欢迎大家阅读参考,我们一起来看看吧!

初二数学第11章《全等三角形》知识点

一、全等三角形

1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质

(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定

边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)

角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)

角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)

4、证明两个三角形全等的基本思路:

二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.

2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:

(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”

(5)截长补短法证三角形全等。

初二数学第12章《轴对称》知识点

第十二章 轴对称

一、轴对称图形

1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

3、轴对称图形和轴对称的区别与联系

4.轴对称与轴对称图形的性质

① 关于某直线对称的两个图形是全等形。

② 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③ 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤ 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线

1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等

3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

1.在平面直角坐标系中

①关于x轴对称的点横坐标相等,纵坐标互为相反数;

②关于y轴对称的点横坐标互为相反数,纵坐标相等;

③关于原点对称的点横坐标和纵坐标互为相反数;

④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

⑤关于与直线X=C或Y=C对称的坐标

点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.

点(x, y)关于y轴对称的点的坐标为___(-x, y)___.

2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

四、(等腰三角形)知识点回顾

1.等腰三角形的性质

①.等腰三角形的两个底角相等。(等边对等角)

②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

理解:已知等腰三角形的一线就可以推知另两线。

2、等腰三角形的判定:

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边三角形)知识点回顾

1.等边三角形的性质:

等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

初二数学第13章《实数》知识点

第十三章 实数

一、实数的分类:

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),

实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数。

3、相反数与倒数;

4、绝对值

5、近似数与有效数字;

6、科学记数法

7、平方根与算术平方根、立方根;

8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。

二、复习

1. 无理数:无限不循环小数


初二数学知识点复习相关文章:

初二的数学知识点2021

八年级函数知识点整理 初二数学期末函数重点归纳

初二数学的复习方法及其技巧大全

初二数学上册知识点2021

八年级数学的一些重要的知识点

初中数学重要知识点归纳有哪些

初中的数学部分重要知识点总结

初二下册数学知识点2021

初二数学的复习技巧和方法

    70570