苏教版九年级上册数学中考考点

俊勇21253分享

数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。就纵度而言,在数学各自领域上的探索亦越发深入。今天小编在这给大家整理了一些苏教版九年级上册数学中考考点,我们一起来看看吧!

苏教版九年级上册数学中考考点

苏教版九年级上册数学中考考点

有理数的加法运算

同号相加一边倒;异号相加“大”减“小”,

符号跟着大的跑;绝对值相等“零”正好。

合并同类项

合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则

去括号、添括号,关键看符号,

括号前面是正号,去、添括号不变号,

括号前面是负号,去、添括号都变号。

一元一次方程

已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

平方差公式

平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式

完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

首±尾括号带平方,尾项符号随中央。

因式分解

一提(公因式)二套(公式)三分组,细看几项不离谱,

两项只用平方差,三项十字相乘法,阵法熟练不马虎,

四项仔细看清楚,若有三个平方数(项),

就用一三来分组,否则二二去分组,

五项、六项更多项,二三、三三试分组,

以上若都行不通,拆项、添项看清楚。

单项式运算

加、减、乘、除、乘(开)方,三级运算分得清,

系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题步骤

去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,

两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集

大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。

一元二次不等式、一元一次绝对值不等式的解集

大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简。

分式方程的解法步骤

同乘最简公分母,化成整式写清楚,

求得解后须验根,原(根)留、增(根)舍,别含糊。

最简根式的条件

最简根式三条件,号内不把分母含,

幂指数(根指数)要互质、幂指比根指小一点。

苏教版数学中考考点总结

找全等三角形的方法:

(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;

(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;

(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;

(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:

①延长中线构造全等三角形;

②利用翻折,构造全等三角形;

③引平行线构造全等三角形;

④作连线构造等腰三角形。

常见辅助线的作法有以下几种:

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

苏教版数学中考考点

1.求证“两线段相等”的问题:

2.“平行于y轴的动线段长度的值”的问题:

由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的值及端点坐标。

3.求一个已知点关于一条已知直线的对称点的坐标问题:

先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。

4.“抛物线上是否存在一点,使之到定直线的距离”的问题:

(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为距离。

(方法2)该问题等价于相应动三角形的面积问题,从而可先求出该三角形取得面积时,动点的坐标,再用点到直线的距离公式,求出其距离。

(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其距离运用点到直线的距离公式可以轻松求出。


苏教版九年级上册数学中考考点相关文章:

初三数学重点难点考点归纳

数学九上册知识点必看

初中数学中考考点归纳总结2021

数学中考考点

2021初三数学月考考点分析

初中数学考点归纳整理

初三的数学知识点2021

2021太原中考数学必考考点

中考数学题型考点归纳

2021中考数学考点分析

    146634