高考数学解题技巧大全
对于数学这门功课,如果能够掌握正确有效的解题方法和技巧,不仅可以帮助我们培养良好的数学素养,而且也能提升学生数学解题效率。以下是小编整理的高考数学解题技巧大全,欢迎大家借鉴与参考!
高考数学解题技巧
面对难题,讲究策略,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
高考数学解题方法
首先同学们要正确认识压轴题。
压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
第二重要心态:千万不要分心
其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
第三重要心态:重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,
步骤(1)将题目条件推导出“新条件”,
步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
最高境界就是任何一道题目,在你心中没有难易之分,心中只有根据题目条件推出新条件,一直推到最终的结论。解题心态也应当是宠辱不惊,不以题目易而喜,不以题目难而悲,平常心解题。
最后还有一点要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学压轴题的答题技巧就为大家介绍到这里,希望对你有所帮助。
高考数学答题技巧
一、调整好状态,控制好自我。
1、保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
2、按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。
二、答题策略选择
1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;
2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。
三、答题思想方法
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4.选择与填空中出现不等式的题目,优选特殊值法;
5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
高考数学解题技巧大全相关文章: