小升初数学经典真题
也许小升初的小伙伴们,想知道小学数学应该怎么学,有哪些学习方法能够提高数学成绩,下面小编给大家整理了关于小升初数学经典真题的内容,欢迎阅读,内容仅供参考!
小升初数学经典真题
1 (人大附中考题)
ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?
2 (清华附中考题)
已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离时多少?
3 (十一中学考题)
甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是?米.
4 (西城实验考题)
甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。当乙从A处返回时走了lO米第二次与甲相遇。A、B相距多少米?
5 (首师大附考题)
甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?
6 (清华附中考题)
从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个的正方体,剩下的几何体的表面积是_________平方厘米.
7 (三帆中学考试题)
有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体这60个小长方体的表面积总和是______平方米
8 (首师附中考题)
一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个?
9 (清华附中考题)
大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车.如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车.问:小轿车实际上每小时行多少千米?
10 (西城实验考题)
小强骑自行车从家到学校去,平常只用20分钟。由于途中有2千米正在修路,只好推车步行,步行速度只有骑车的1/3,结果用了36分钟才到学校。小强家到学校有多少千米?
11 (101中学考题)
小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前4/7 的路程中乘车,车速是小灵通步行速度的10倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,您猜一猜咱们爷孙俩谁先到家?
12 (三帆中学考题)
客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的 3/4,甲、乙两城相距多少千米?
13 (人大附中考题)
小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。那么小明每天步行上学需要时间多少分钟?
14 (清华附中考题)
如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分
组的情况是什么?
15 (三帆中学考题)
观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,
然后填写2001 +( )=2002
16 (06年东城二中考题)
在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?
17 (人大附中考题)
请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。
(1)请你说明:11这个数必须选出来;
(2)请你说明:37和73这两个数当中至少要选出一个;
(3)你能选出55个数满足要求吗?
小学数学重点知识点归纳
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
提高小学数学成绩的方法有哪些
第 一,认真听老师讲课。
这是取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝 听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。上课还要积极举手发言,举手发言的好 处可真不少:①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、 眼到、耳到、心到。
第二,课外练习。
孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是 准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。可以在开始做作业时定好闹钟, 放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。
第 三,复习、预习。
对数学的复习,预习可以定在每天晚上,在完成当天作业后,再将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在 床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,可以翻翻书,直到搞懂为止。每个星期天还要作一星期功课的小结复习、预习。这样 对学数学有好处,并掌握得牢固,就不会忘记了。
小升初数学必考常考题型汇总
一般相遇追及问题
包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。在杯赛中大量出现,约占80%左右。建议熟练应用标准解法,即s=v×t结合标准线段画图(基本功)解答。由于只用到相遇追及的基本公式即可解决,在解题的时候,一旦出现比较多的情况变化时,结合自己画出的图分段去分析情况。
复杂相遇追及问题
(1)多人相遇追及问题。比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
(2)多次相遇追及问题。即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。
标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。
一般用到的时间公式是(只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述):
单程相遇时间:t单程相遇=s/(v甲+v乙)
单程追及时间:t单程追及=s/(v甲-v乙)
第n次相遇时间:tn= t单程相遇×(2n-1)
第m次追及时间:tm= t单程追及×(2m-1)
限定时间内的相遇次数:N相遇次数=[ (tn+ t单程相遇)/2 t单程相遇]
限定时间内的追及次数:M追及次数=[ (tm+ t单程追及)/2 t单程追及]
注:[ ]是取整符号
之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。
简单例题:甲、乙两车同时从A地出发,在相距300千米的A、B两地之间不断往返行驶,已知甲车的速度是每小时30千米,乙车的速度是每小时20千 米。
问:(1)第二次迎面相遇后又经过多长时间甲、乙追及相遇?(2)相遇时距离中点多少千米?(3)50小时内,甲乙两车共迎面相遇多少次?
火车问题
特点无非是涉及到车长,相对容易。小题型分为:
1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,
解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;
2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,
解法:火车车长(总路程)=火车速度×通过时间;
3、火车+人:一个有长度、有速度,一个没长度、但有速度,
(1)、火车+迎面行走的人:相当于相遇问题,
解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;
(2)火车+同向行走的人:相当于追及问题,
解法:火车车长(总路程) =(火车速度-人的速度) ×追及的时间;
(3)火车+坐在火车上的人:火车与人的相遇和追及问题
解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);
4、火车+火车:一个有长度、有速度,一个也有长度、有速度,
(1)错车问题:相当于相遇问题,
解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;
(2)超车问题:相当于追及问题,
解法:快车车长+慢车车长(总路程) =(快车速度-慢车速度) ×错车时间;
对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。