高三上学期物理专题复习教案
以“物理课程标准”为宗旨,适应新课程改革的需要,面向全体学生,提高学生的人文素养,增强实践能力和创新精神。正确把握物理学科特点,积极倡导合作探究的学习方式。培养学生积极地情感态度和正确的人生价值观,提高学生综合素质为学生全面发展和终身发展奠定基础。下面是小编为大家整理的5篇高三上学期物理专题复习教案内容,感谢大家阅读,希望能对大家有所帮助!
高三上学期物理专题复习教案1
一、教学目标
1、知道平抛运动的特点是:初速度方向为水平,只在竖直方向受重力作用,运动轨迹是抛物线。
2、理解平抛运动是匀变速运动,其加速度为g
3、理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动,并且这两个运动互不影响。
4、会用平抛运动的规律解答有关问题。
二、重点难点
重点:平抛运动的特点和规律。
难点:对平抛运动的两个分运动的理解。
三、教学方法:
实验观察、推理归纳
四、教学用具:
平抛运动演示仪、多媒体及课件
五、教学过程
引入:粉笔头从桌面边缘水平飞出,观察粉笔头在空中做什么运动,这种运动具有什么特点,本节课我们就来学习这个问题。
(一)平抛运动
1、定义:将物体用一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
举例:用力打一下桌上的小球,使它以一定的水平初速度离开桌面,小球所做的运动就是平抛运动,并且我们看见它做的是曲线运动。
分析:平抛运动为什么是曲线运动?(因为物体受到与速度方向成角度的重力作用)
2、平抛运动的特点
(1)从受力情况看:
竖直的重力与速度方向有夹角,作曲线运动。
b.水平方向不受外力作用,是匀速运动,速度为V0。
c. 竖直方向受重力作用,没有初速度,加速度为重力加速度g,是自由落体运动。
总结:做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。加速度等于g
(二)、实验验证:
【演示实验】用小锤打击弹性金属片时,A球向水平方向飞出,做平抛运动,而同时B球被松开,做自由落体运动。
现象: 越用力打击金属片,A球的水平速度也越大;无论A球的初速度多大,它总是与B球同时落地。
(2)、用课件模拟课本图5—16的实验。
结果分析:平抛运动在竖直方向上是自由落体运动,水平方向的速度大小
并不影响平抛物体在竖直方向上的运动。而水平分运动是匀速的,且不受竖直方向的运动的影响。
(3)、利用频闪照相更精细地研究平抛运动,其照片如课本图5—17所示
可以看出,两球在竖直方向上,经过相等的时间,落到相同的高度,即在竖直方向上都是自由落体运动;在水平方向上可以看出,通过相等的时间前进的距离相同,既水平分运动是匀速的。由此说明平抛运动的两个分运动是同时、独立进行的,竖直方向的运动与水平方向的运动互不影响。
(三)、平抛运动的规律
1、抛出后t 秒末的速度
以抛出点为坐标原点,水平方向为x轴(正方向和初速度v0的方向相同),竖直方向为y轴,正方向向下,则
水平分速度:Vx=V0
竖直分速度:Vy=gt
合速度:
2、平抛运动的物体在任一时刻t的位置坐标
以抛出点为坐标原点,水平方向为x轴(正方向和初速度v0的方向相同),竖直方向为y轴,正方向向下,则
水平位移:x=V0t
竖直位移:
合位移:
运用该公式我们可以求得物体在任意时刻的坐标并找到物体所在的位置,然后用平滑曲线把这些点连起来,就得到平抛运动的轨迹,这个轨迹是一条抛物线。
(四)例题分析
例1.如图(结合课件),树枝上的一只松鼠看到一个猎人正用枪对准它,为了逃脱即将来临的厄运,它想让自己落到地面上逃走。但是就在它掉离树枝的瞬间子弹恰好射出枪口,问松鼠能逃脱厄运吗?
答:不能。因子弹和松鼠在竖直方向都是自由落体运动,竖直方向的位移总是相同的,所以只要在子弹的射程内,就一定能射中松鼠,松鼠在劫难逃。
例2.一艘敌舰正以V1=12m/s的速度逃跑,飞机在320m高空以V2=105m/s的速度同向追击。为击中敌舰,应提前投弹。求飞机投弹时,沿水平方向它与敌舰之间的距离多大?若投弹后飞机仍以原速度飞行,在炸弹击中敌舰时,飞机与敌舰的位置关系如何?
解:用多媒体模拟题目所述的物理情景
让学生对照课本上的例题解答——书写解题过程。
飞机投弹时,沿水平方向它与敌舰之间的距离位744m,由于飞机和炸弹在水平方向的速度相等,所以在炸弹击中敌舰时飞机在敌舰正上方。
(五)、课堂练习
1、讨论:练习三(1)(2)(3)
2、从高空水平方向飞行的飞机上,每隔1分钟投一包货物,则空中下落的许多包货物和飞机的连线是
A.倾斜直线 B.竖直直线 C.平滑曲线 D.抛物线
【B】
_3、平抛一物体,当抛出1秒后它的速度与水平方向成45o角,落地时速度方向与水平方向成60o角。( g取10 m/s2 )
(1)求物体的初速度;
(2)物体下落的高度。( 答案:v0=10m/s h=15m )
(五)、课堂小结
本节课我们学习了
1、什么是平抛运动
2、平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动
3、平抛运动的规律
六、课外作业:
高三上学期物理专题复习教案2
教学目标
知识目标:
1、了解万有引力定律得出的思路和过程。
2、理解万有引力定律的含义并会推导万有引力定律。
3、知道任何物体间都存在着万有引力,且遵守相同的规律
能力目标:
1、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。
2、训练学生透过现象(行星的运动)看本质(受万有引力的作用)的判断、推理能力
德育目标:
1、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,渗透科学发现的方_教育。
2、培养学生的猜想、归纳、联想、直觉思维能力。
教学重难点
教学重点:
月——地检验的推倒过程
教学难点:
任何两个物体间都存在万有引力
教学过程
(一) 引入:
太阳对 行星的引力是行星做圆周运动的向心力,这个力使行星不能飞离太阳;地面上的物体被抛出后总要落到地面上;是什么使得物体离不开地球呢?是否是由于地球对物体的引力造成的呢?
若真是这样,物体离地面越远,其受到地球的引力就应该越小 ,可是地面上的物体距地面很远时受到地球的引力似乎没有明显减小。如果物体延伸到月球那里,物体也会像月球那样围绕地球运动。地球对月球的引力,地球对地面上的物体的引力,太阳对行星的引力,是同一 种力。你是这样认为的吗?
(二)新课教学:
一.牛顿发现万有引力定律的过程
(引导学生阅读教材找出发现万有引力定律的思路)
假想—_推导——实验检验
(1) 牛顿对引力的思考
牛顿看到了苹果落地发现了万有引力,这只是一种传说。但是,他对天体和地球的引力确实作过深入的思考。牛顿经过长期观察研究,产生如下的假想:太阳、行星以及离我们很远的恒星,不管彼此相距多远,都是互相吸引着,其引力随距离的增大而减小,地球和其他行星绕太阳转,就是靠劂的引力维持。同样,地球不仅吸引地面上和表面附近的物体,而且也可以吸引很远的物体(如月亮),其引力也是随距离的增大而减弱。牛顿进一步猜想,宇宙间任何物体间都存在吸引力,这些力具有相同的本质,遵循同样的力学规律,其大小都与两者间距离的平方成反比。
(2) 牛顿对定律的推导
首先,要证明太阳的引力与距离平方成反比,牛顿凭着他对于数学和物理学证明的惊人创造才能,大胆地将自己从地面上物体运动中总结出来的运动定律,应用到天体的运动上,结合开普勒行星运动定律,从理论上推导出太阳对行星的引力F与距离r的平方成反比,还证明引力跟太阳质量M和行星质量m的乘积成正比,牛顿再研究了卫星的运动,结论是:
它们间的引力也是与行星和卫星质量的乘积成正比,与两者距离的平方成反比。
(3)。牛顿对定律的检验
以上结论是否正确,还需经过实验检验。牛顿根据观测结果,凭借理想实验巧妙地解决了这一难题。
牛顿设想,某物体在地球表面时,其重力加速度为g,若将它放到月球轨道上,让它绕地球运动时,其向心加速度为a。如果物体在地球上受到的重力F1,和在月球轨道上运行时受到的作用力F2,都是来自地球的吸引力,其大小与距离的平方成反比,那么,a和g之间应有如下关系:
已知月心和地心的距离r月地是地球半径r地的60倍,得。
从动力学角度得出的这一结果,与前面用运动学公式算出的数据完全一致,
牛顿证实了关于地球和物体间、各天体之间的引力都属于同一种性质力,都遵循同样的力学规律的假想是正确的。牛顿把这种引力规律做了合理的推广,在1687年发表了万有引力定律。可以用下表来表达牛顿推证万有引力定律的思路。
(引导学生根据问题看书,教师引导总结)
(1)什么是万有引力?并举出实例。
(2)万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?
(3)万有引力定律的适用条件是什么?
二.万有引力定律
1、内容:
自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量乘积成正比,跟它们的距离的二次方成反比;引力的方向沿着二者的连线。
2.公式:
3.各物理量的含义及单位:
F为两个物体间的引力,单位:N.
m1、m2分别表示两个物体的质量,单位:kg
r为它们间的距离,单位:m
G为万有引力常量:G=6.67×10-11 N·m2/kg2,单位:N·m2/kg2.
4.万有引力定律的理解
①万有引力F是因为相互作用的物体有质量而产生的引力,与初中学习的电荷间的引力、磁极间的引力不同。
强调说明:
A.万有引力的普遍性.万有引力不仅存在于星球间,任何客观存在的有质量的物体间都存在这种相互吸引的力.
B.万有引力的相互性.两个物体相互作用的引力是一对相互作用的作用力与反作用力,它们大小相等,方向相反,分别作用在两个物体上.
C.万有引力的宏观性.在通常情况下,万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际的物理意义.
D.万有引力的独立性.两物体间的万有引力只与它们本身的质量有关,而与所在空间的性质无关,也与周围有无其他物体无关.
② r为两个物体间距离:
A、若物体可以视为质点,r是两个质点间的距离。
B、若是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。
C、若物体不能视为质点,则可把每一个物体视为若干个质点的集合,然后按万有引力定律求出各质点间的引力,再按矢量法求它们的合力。
③ G为万有引力常量,在数值上等于质量都是1kg的两物体相距1m时的相互作用的引力
随堂练习:
1、探究:叫两名学生上讲台做两个游戏:一个是两人靠拢后离开三次以上,二个是叫两人设法跳起来停在空中看是否能做到。然后设问:既然自然界中任何两个物体间都有万有引力,那么在日常生活中,我们各自之间或人与物体之间,为什么都对这种作用没有任何感觉呢?
具体计算:地面上两个50kg的质点,相距1m远时它们间的万有引力多大?已知地球的质量约为6.0×1024kg,地球半径为6.4×106m,则这个物体和地球之间的万有引力又是多大?(F1=1.6675×10-7N,F2=493N)
(学生计算后回答)
本题点评:由此可见通常物体间的万有引力极小,一般不易感觉到。而物体与天体间的万有引力(如人与地球)就不能忽略了。
2、要使两物体间万有引力减小到原来的1/4,可采用的方法是( )
A.使两物体的质量各减少一半,距离保持不变
B.使两物体间距离增至原来的2倍,质量不变
C.使其中一个物体质量减为原来的1/4,距离不变
D.使两物体质量及它们之间的距离都减为原来的1/4
答案:ABC
3.设地球表面重力加速度为,物体在距离地心4R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则为( )
A. 1 B 1/9 C. 1/4 D. 1/16
提示:两处的加速度各由何力而产生?满足何规律?
答案:D
三.引力恒量的测定
牛顿发现了万有引力定律,却没有给出引力恒量的数值。由于一般物体间的引力非常小,用实验测定极其困难。直到一百多年之后,才由英国的卡文迪许用精巧的扭秤测出。
(1)用扭秤测定引力恒量的方法
卡文迪许解决问题的思路是:将不易观察的微小变化量,转化为容易观察的显著变化量,再根据显著变化量与微小量的关系,算出微小变化量。
问:卡文迪许扭秤实验中如何实现这一转化?
测引力(极小)转化为测引力矩,再转化为测石英丝扭转角度,最后转化为光点在刻度尺上移动的距离(较大)。根据预先求出的石英丝扭转力矩跟扭转角度的关系,可以证明出扭转力矩,进而求得引力,确定引力恒量的值。
卡文迪许在测定引力恒量的同时,也证明了万有引力定律的正确性。
(四)、小结
本节课重点学习了万有引力定律的内容、表达式、理解以及简单的应用重点理解定律的普遍性、普适性,对万有引力的性质有深层的认识
对万有引力定律的理解应注意以下几点:
(1) 万有引力的普遍性。它存在于宇宙中任何有质量的物体之间,不管它们之间是否还有其他作用力。
(2) 万有引力恒量的普适性。它是一个仅和m、r、F单位选择有关,而与物体性质无关的恒量。
(3) 两物体间的引力,是一对作用力和反作用力。
(4) 万有力定律只适用于质点和质量分布均匀球体间的相互作用。
课后习题
课本71页:2、3
板书
万有引力定律
1、万有引力定律的推导:
2、万有引力定律
①内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
②公式:
G是引力常量,r为它们间的距离
③各物理量的含义及单位:
④万有引力定律发现的重要意义:
3.引力恒量的测定
4.万有引力定律的理解
①万有引力F是因为相互作用的物体有质量而产生的引力,与初中学习的电荷间的引力、磁极间的引力不同。
强调说明:
A.万有引力的普遍性.万有引力不仅存在于星球间,任何客观存在的有质量的物体间都存在这种相互吸引的力.
B.万有引力的相互性.两个物体相互作用的引力是一对相互作用的作用力与反作用力,它们大小相等,方向相反,分别作用在两个物体上.
C.万有引力的宏观性.在通常情况下,万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际的物理意义.
D.万有引力的独立性.两物体间的万有引力只与它们本身的质量有关,而与所在空间的性质无关,也与周围有无其他物体无关.
② r为两个物体间距离:
A、若物体可以视为质点,r是两个质点间的距离。
B、若是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。
C、若物体不能视为质点,则可把每一个物体视为若干个质点的集合,然后按万有引力定律求出各质点间的引力,再按矢量法求它们的合力。
③ G为万有引力常量,在数值上等于质量都是1kg的两物体相距1m时的相互作用的引力
高三上学期物理专题复习教案3
教学目标
1、知识与技能
(1)了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;
(2)行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;
(3)了解万有引力定律在天文学上有重要应用。
2.过程与方法:
(1)培养学生根据数据分析找到事物的主要因素和次要因素的一般过程和方法;
(2)培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法;
(3)培养学生归纳总结建立模型的能力与方法。
3.情感态度与价值观:
(1)培养学生认真严禁的科学态度和大胆探究的心理品质;
(2)体会物理学规律的简洁性和普适性,领略物理学的优美。
教学重难点
教学重点
地球质量的计算、太阳等中心天体质量的计算。
教学难点
根据已有条件求中心天体的质量。
教学工具
多媒体、板书
教学过程
一、计算天体的质量
1.基本知识
(1)地球质量的计算
①依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即
②结论:
只要知道g、R的值,就可计算出地球的质量.
(2)太阳质量的计算
①依据:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即
②结论:
只要知道卫星绕行星运动的周期T和半径r,就可以计算出行星的质量.
2.思考判断
(1)地球表面的物体,重力就是物体所受的万有引力.(×)
(2)绕行星匀速转动的卫星,万有引力提供向心力.(√)
(3)利用地球绕太阳转动,可求地球的质量.(×)
3.探究交流
若已知月球绕地球转动的周期T和半径r,由此可以求出地球的质量吗?能否求出月球的质量呢?
【提示】 能求出地球的质量.利用
为中心天体的质量.做圆周运动的月球的质量m在等式中已消掉,所以根据月球的周期T、公转半径r,无法计算月球的质量.
二、发现未知天体
1.基本知识
(1)海王星的发现
英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23日,德国的加勒在勒维耶预言的位置附近发现了这颗行星——海王星.
(2)其他天体的发现
近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体.
2.思考判断
(1)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性.(√)
(2)科学家在观测双星系统时,同样可以用万有引力定律来分析.(√)
3.探究交流
航天员翟志刚走出“神舟七号”飞船进行舱外活动时,要分析其运动状态,牛顿定律还适用吗?
【提示】 适用.牛顿将牛顿定律与万有引力定律综合,成功分析了天体运动问题.牛顿定律对物体在地面上的运动以及天体的运动都是适用的.
三、天体质量和密度的计算
【问题导思】
1.求天体质量的思路是什么?
2.有了天体的质量,求密度还需什么物理量?
3.求天体质量常有哪些方法?
1.求天体质量的思路
绕中心天体运动的其他天体或卫星做匀速圆周运动,做圆周运动的天体(或卫星)的向心力等于它与中心天体的万有引力,利用此关系建立方程求中心天体的质量.
2.计算天体的质量
下面以地球质量的计算为例,介绍几种计算天体质量的方法:
(1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力,即
(2)若已知月球绕地球做匀速圆周运动的半径r和月球运行的线速度v,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
(4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得
解得地球质量为
3.计算天体的密度
若天体的半径为R,则天体的密度ρ
误区警示
1.计算天体质量的方法不仅适用于地球,也适用于其他任何星体.注意方法的拓展应用.明确计算出的是中心天体的质量.
2.要注意R、r的区分.R指中心天体的半径,r指行星或卫星的轨道半径.以地球为例,若绕近地轨道运行,则有R=r.
例:要计算地球的质量,除已知的一些常数外还需知道某些数据,现给出下列各组数据,可以计算出地球质量的有哪些?( )
A.已知地球半径R
B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v
C.已知卫星绕地球做匀速圆周运动的线速度v和周期T
D.已知地球公转的周期T′及运转半径r′
【答案】 ABC
归纳总结:求解天体质量的技巧
天体的质量计算是依据物体绕中心天体做匀速圆周运动,万有引力充当向心力,列出有关方程求解的,因此解题时首先应明确其轨道半径,再根据其他已知条件列出相应的方程.
四、分析天体运动问题的思路
【问题导思】
1.常用来描述天体运动的物理量有哪些?
2.分析天体运动的主要思路是什么?
3.描述天体的运动问题,有哪些主要的公式?
1.解决天体运动问题的基本思路
一般行星或卫星的运动可看做匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式:
2.四个重要结论
设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动
以上结论可总结为“越远越慢,越远越小”.
误区警示
1.由以上分析可知,卫星的an、v、ω、T与行星或卫星的质量无关,仅由被环绕的天体的质量M和轨道半径r决定.
2.应用万有引力定律求解时还要注意挖掘题目中的隐含条件,如地球的公转周期是365天,自转一周是24小时,其表面的重力加速度约为9.8 m/s2.
例:)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55 Cancri e”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的480(1),母星的体积约为太阳的60倍.假设母星与太阳密度相同,“55 Cancri e”与地球均做匀速圆周运动,则“55 Cancri e”与地球的( )
【答案】 B
归纳总结:解决天体运动的关键点
解决该类问题要紧扣两点:一是紧扣一个物理模型:就是将天体(或卫星)的运动看成是匀速圆周运动;二是紧扣一个物体做圆周运动的动力学特征,即天体(或卫星)的向心力由万有引力提供.还要记住一个结论:在向心加速度、线速度、角速度和周期四个物理量中,只有周期的值随着轨道半径的变大而增大,其余的三个都随轨道半径的变大而减小
五、双星问题的分析方法
例:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)
归纳总结:双星系统的特点
1.双星绕它们共同的圆心做匀速圆周运动,它们之间的距离保持不变;
2.两星之间的万有引力提供各自需要的向心力;
3.双星系统中每颗星的角速度相等;
4.两星的轨道半径之和等于两星间的距离.
高三上学期物理专题复习教案4
教学目标:
l 知识与技能
1.能用速度描述物体的运动;
2.能用速度公式进行简单的计算;
3.知道匀速直线运动的概念。
l 过程与方法
1.体验比较物体运动快慢的方法;
2.认识速度概念在实际中的意义。
l 情感态度与价值观
有用“运动有快慢”的观点观察和分析身边事例的意识。
教学重点与难点:
重点:速度的物理意义及速度的公式 。
难点:1.速度概念的建立;
2.研究物体运动的方法“频闪摄影”。
教学资源:多媒体
教学过程:
一、知识回顾
1.什么是机械运动?
2、什么是参照物?
(设计意图:回顾物体位置的变化叫做机械运动,以参照物作为标准判断物体是否在运动。增加前后内容的联系,引出详细学习运动的相关知识)
二、新课教学
模块一:引入新课,建构速度的概念。
【环节一】引入新课
在实际生活过程中,运动的快慢是人们关心的问题。
多媒体展示:出游时,人们希望最快到达目的地;刘翔比赛时,第一个冲到终点;草原上,猎豹追捕鹿。
此时,运动的快慢决定的不只是是否快捷或者荣耀,而关系到生死的角逐。
演示实验:
将两个等大的圆纸片剪去不同大小的扇形后粘贴成两个锥角不等的纸锥。比较这两张纸锥从相同高度下落的快慢,然后汇报观察到的现象,
问题:如何来比较运动的快慢呢?
(设计意图:初中学生思维活跃,用学生熟悉的身边事例来让学生了解运动的快慢很重要从而提出问题如何比较运动的快慢,引出新课)
【环节二】比较物体运动快慢的方法
1.以小组为单位,根据前面三个事例,结合生活实际分析比较物体快慢的方法;
2.交流总结;
3.展示各组讨论成果。
教师对学生的成果进行评价并总结:比较运动快慢的两种方法:①路程相同的情况下,所用时间的长短;(用时短的就快) ②在时间相同的情况下,看路程的大小。(路程大的就快)
(设计意图:充分发挥学生的主体作用,引导学生主动思考,结合生活实际总结规律,培养小组合作精神。)
【环节三】创设情境,建构速度概念
教师提出新问题:若路程不相同,时间也不相同时,那如何去比较运动的快慢呢?
1.创设情境
学校的百米冠军的成绩是12s,而24届奥运会一万米比赛冠军的成绩是28 min,怎样比
较他们运动的快慢?
教师启发:时间和路程都不一样,我们可不可以把他们其中一个量设置成一样呢?
学生思考讨论:可以计算两位冠军每1s内运动的路程,每一个相等时间内运动的路程长的物体运动的就快。这样就将问题转化为在时间相等情况下进行比较。
2.速度
我们平时就是用这种方法来表示物体运动快慢的,称作速度,用符号v表示。它等于运动物体在单位时间内通过的路程,也就是 ,路程用s表示,时间用t表示,所以 。物理量都有单位,那么速度的国际制单位是什么呢?
学生数学中学过路程的国际制单位是米,时间的国际制单位是秒,所以会很容易想到速度的国际制单位是米每秒,符号为m/s。
教师补充在交通运输中我们还常用到千米每小时做速度的单位,符号为km/h。1m/s=3.6km/h。并用多媒体展示一些物体运动的速度,并强调常用的几个。
【环节四】速度应用(多媒体展示)
例题1:
教师指导学生进行物理计算,规范计算步骤:①要把必要的文字说明写出来。②如果相同的物理量单位不同,要统一单位。③把已知量代入公式时,数字后面要写上正确的单位。
例题2:火车提速后,在北京和上海之间的运行速度约为104 km/h,两地之间的铁路线长1453 km,火车从北京到上海大约要用多长时间?
强调公式变形,用速度公式解决实际问题。
例题3:一位百米赛跑运动员跑完全程用了11 s,一辆摩托车的速度表指示为40km/h,哪一个的速度比较快?
学生自主解答。
(设计意图:创设情境,联系生活实际,在教师的引导下理解速度概念;例题展示规范学生解决物理题的步骤并学会速度公式的变式,同时注意将物理知识应用于实际,解决实际问题。)
模块二:匀速直线运动
【环节一】研究物体运动的方法——“频闪摄影”
多媒体展示两个网球运动时频闪照片,提出问题:①哪个球运动的时间比较长?
②哪个小球运动的速度(即运动快慢)基本保持不变?③哪个小球的运动越来越快?(提示可以用两种比较快慢的方法)
第一个网球任何相等时间通过的路程相等也就是运动快慢不变,并且一直沿着直线运动,并且运动方向不变,我们成这样的运动为匀速直线运动。
(设计意图:用频闪摄影形象直观的向学生展示物体的运动情况,加深学生记忆;提出问题,学生自主讨论思考,引出匀速直线运动)
【环节二】匀速直线运动
1.匀速直线运动
物体沿着直线快慢不变的运动,叫做匀速直线运动。
(注意:运动路线是直线,运动快慢不变即速度不变)
匀速直线运动是最简单的机械运动。
2.平均速度
物体沿着直线快慢改变即速度改变的运动,叫做变速运动。
日常生活中所见到的运动基本上都是变速运动。物体做变速运动时速度时快时慢,怎样描述它的运动情况呢?
变速运动比匀速运动复杂,如果只做粗率研究,也可以用 来计算,这样算出来的就是用以描述变速运动物体的运动情况的平均速度。此时s是某段的总路程,t是某段的总时间,v表示的就是某段时间或某段路程的平均速度。
例题:火车从北京行驶1小时到天津,通过的路程是140 km,求火车的平均速度.
三、课堂小结
让学生谈本节课的收获,教师给予总结提升,构建本节知识网络。
一、速度是表示物体运动快慢的物理量。
1、匀速直线运动中,速度等于运动物体在单位时间内通过的路程.
2、匀速直线运动速度的计算公式是v=
3、速度的单位是米/秒(m/s)、千米/时(km/h).
1 m/s=3.6 km/h
二、在变速运动中,v= 求出的是平均速度。
高三上学期物理专题复习教案5
教学目标
知识与技能
1.理解平抛运动是匀变速运动,其加速度为g.
2.掌握抛体运动的位置与速度的关系.
过程与方法
1.掌握平抛运动的特点,能够运用平抛规律解决有关问题.
2.通过例题分析再次体会平抛运动的规律.
情感、态度与价值观
1.有参与实验总结规律的热情,从而能更方便地解决实际问题.
2.通过实践,巩固自己所学的知识.
教学重难点
教学重点
分析归纳抛体运动的规律
教学难点
应用数学知识分析归纳抛体运动的规律.
教学过程
[新课导入]
上一节我们已经通过实验探究出平抛运动在竖直方向和水平方向上的运动规律,对平抛运动的特点有了感性认识.这一节我们将从理论上对抛体运动的规律作进一步分析,学习和体会在水平面上应用牛顿定律的方法,并通过应用此方法去分析没有感性认识的抛体运动的规律.
[新课教学]
一、抛体的位置
我们以平抛运动为例来研究抛体运动所共同具有的性质.
首先我们来研究初速度为。的平抛运动的位置随时间变化的规律.用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动.我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬间开始计时.
师:在抛出后的运动过程中,小球受力情况如何?
生:小球只受重力,重力的方向竖直向下,水平方向不受力.
师:那么,小球在水平方向有加速度吗?它将怎样运动?
生:小球在水平方向没有加速度,水平方向的分速度将保持v不变,做匀速直线运动.
师:我们用函数表示小球的水平坐标随时间变化的规律将如何表示?
生:x=vt
师:在竖直方向小球有加速度吗?若有,是多大?它做什么运动?它在竖直方向有初速度吗?
生:在竖直方向,根据牛顿第二定律,小球在重力作用下产生加速度g.做自由落体运动,而在竖直方向上的初速度为0.
师:那根据运动学规律,请大家说出小球在竖直方向的坐标随时间变化的规律.
生:y=1/2gt2
师:小球的位置能否用它的坐标(x,y)描述?能否确定小球在任意时刻t的位置?
生:可以.
师:那么,小球的运动就可以看成是水平和竖直两个方向上运动的合成.t时间内小球合位移是多大?
生:
师:若设s与+x方向(即速度方向)的夹角为θ,如图6.4—1,则其正切值如何求?
生:
[例1]一架飞机水平匀速飞行.从飞机上海隔l s释放一个铁球,先后释放4个,若不计空气阻力,从地面上观察4个小球( )
A.在空中任何时刻总是捧成抛物线,它们的落地点是等间距的
B.在空中任何时刻总是排成抛物线,它们的落地点是不等间距的
C.在空中任何时刻总在飞机正下方,排成竖直的直线,它们的落地点是等间距的
D.在空中任何时刻总在飞机的正下方,捧成竖直的直线,它们的落地点是不等间距的。
解析:因为铁球从飞机上释放后做平抛运动,在水平方向上有与飞机相同的速度.不论铁球何时从飞机上释放,铁球与飞机在水平方向上都无相对运动.铁球同时还做自由落体运动,它在竖直方向将离飞机越来越远.所以4个球在落地前始终处于飞机的正下方,并排成一条直线,又因为从飞机上每隔1s释放1个球,而每个球在空中运动的时间又是相等的,所以这4个球落地的时间也依次相差1 s,它们的落地点必然是等间距的.若以飞机为参考系观察4个铁球都做自由落体运动.此题把曲线运动利用分解的方法“化曲为直”,使其成为我们所熟知的直线运动,则据运动的独立性,可以分别在这两个方向上用各自的运动规律研究其运动过程.
二、抛体的速度
师:由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间?
生:由y=1/2gt2得到,运动时间
师:这说明了什么问题?
生:这说明了做平抛运动的物体在空中运动的时间仅取决于下落的高度,与初速度无关.
师:那么落地的水平距离是多大?
生:落地的水平距离
师:这说明了什么问题?
生:这说明了平抛运动的水平位移不仅与初速度有关系,还与物体的下落高度有关.
师:利用运动合成的知识,结合图6.4—2,求物体落地速度是多大?结论如何?
生:落地速度,即落地速度也只与初速度v和下落高度h有关.
师:平抛运动的速度与水平方向的夹角为a,一般称为平抛运动的偏角.实际上,常称为平抛运动的偏角公式,在一些问答题中可以直接应用此结论分析解答
[例2]一个物体以l0 m/s的速度从10 m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)?
[例3]在5 m高的地方以6 m/s的初速度水平抛出一个质量是10 kg的物体,则物体落地的速度是多大?从抛出点到落地点发生的位移是多大?(忽略空气阻力,取g=10m/s2)
[交流与讨论]
应用运动的合成与分解的方法我们探究了做平抛运动的物体的位移和速度.请大家根据我们探究的结果研究一下平抛运动的物体位移和速度之间存在什么关系.
参考解答:根据前面的探究结果我们知道,物体的位移,与x轴的夹角的正切值为tanθ=gt/2v.物体的速度,与x轴的夹角的正切值为tanθ=gt/v.可以看到位移和速度的大小没有太直接的关系,但它们的方向与x轴夹角的正切是2倍关系.利用这个关系我们就可以很方便地计算物体速度或位移的方向了. 师:在(2)中,与匀变速直线运动公式vt2=v02+2as,形式上一致的,其物理意义相同吗? 生:物理意义并不相同,在中的h,并不是平抛运动的位移,而是竖直方向上的位移,在
中的s就是表示匀速直线运动的位移.对于平抛运动的位移,是由竖直位移和水平位移合成而得的.
师:平抛运动的轨迹是曲线(抛物线),某一时刻的速度方向即为曲线上物体所在位置的切线方向.设物体运动的时间为t,则这一时刻的速度与竖直方向夹角的正切值tanβ=v0/gt,而物体下落的高度为h==1/2gt2.如图6.4—3.
图中的A点为速度的切线与抛出点的水平线的交点,C点为物体所在位置的竖直线与水平线的交点,从图中可以看出A为水平线段OC的中点.平抛运动的这一重要特征,对我们分析类平抛运动,特别是带电粒子在电场中偏转是很有帮助的.
平抛运动常分解成水平方向和竖直方向的两个分运动来处理,由于竖直分运动是初速度为零的匀加速直线运动,所以初速度为零的匀加速直线运动的公式和特点均可以在此应用.另外,有时候根据具体情况也可以将平抛运动沿其他方向分解.
三、斜抛运动
师:如果物体抛出时的速度不是沿水平方向,而是斜向上方或斜向下方的(这种情况称为斜抛),它的受力情况是什么样的?加速度又如何?
生:它的受力情况与平抛完全相同,即在水平方向仍不受力,加速度仍是0;在竖直方向仍只受重力,加速度仍为g.
师:实际上物体以初速度v沿斜向上或斜向下方抛出,物体只在重力作用下的运动,如何表示?与平抛是否相同?
生:斜抛运动沿水平方向和竖直方向初速度与平抛不同,分别是vx=vcosθ和vy=sinθ.
由于物体运动过程中只受重力,所以水平方向速度vx=vcosθ保持不变,做匀速直线运动;而竖直方向上因受重力作用,有竖直向下的重力加速度J,同时有竖直向上的初速度vy=sinθ,因此做匀减速运动(是竖直上抛运动,当初速度向斜下方,竖直方向的分运动为竖直下抛运动),当速度减小到。时物体上升到点,此时物体由于还受到重力,所以仍有一个向下的加速度g,将开始做竖直向下的加速运动.因此,斜抛运动可以看成是水平方向速度为vx=vcosθ的匀速直线运动和竖直方向初速度为vy=sinθ的竖直上抛或竖直下抛运动的合运动.
师:斜抛运动分斜上抛和斜下抛(由初速度方向确定)两种,下面以斜上抛运动为例讨论.
师:斜抛运动的特点是什么?
生:特点:加速度a=g,方向竖直向下,初速度方向与水平方向成一夹角θ斜向上,θ=90°时为竖直上抛或竖直下抛运动θ=0°时为平抛运动.
师:常见的处理方法:
①将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,这样有由此可以得到哪些特点?
生:由此可得如下特点:a.斜向上运动的时间与斜向下运动的时间相等;b.从轨道点将斜抛运动分为前后两段具有对称性,如同一高度上的两点,速度大小相等,速度方向与水平线的夹角相同.
师:②将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解.
③将沿斜面和垂直斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题.
[交流与讨论]
对于斜抛运动我们只介绍下船上抛和斜下抛的研究方法,除了平抛、斜上抛、斜下抛外,抛体运动还包括竖直上抛和竖直下抛,请大家根据我们研究前面几种抛体运动的方法来研究一下竖直上抛和竖直下抛.
参考解答:对于这两种运动来说,它们都是直线运动,但这并不影响用运动的合成与分解的方法来研究它们.这个过程我们可以仿照第一节中我们介绍的匀加速运动的分解过程.对竖直上抛运动,设它的初速度为v0,那么它的速度就可以写成v= v0—gt的形式,位移写成x= v0t—g t2/2的形式.那这样我们就可以进行分解了.把速度写成v1= v0,v2=—gt的形式,把位移写成xl= v0t,x2= —g t2/2的形式,这样我们可以看到,竖直上抛运动被分解成了一个竖直向上的匀速直线运动和一个竖直向上的匀减速运动.对于竖直下抛运动可以采取同样的方法进行处理.
课后小结
1.具有水平速度的物体,只受重力作用时,形成平抛运动.
2.平抛运动可分解为水平匀蓬运动和竖直自由落体运动.平抛位移等于水平位移和竖直位移的矢量和;平抛瞬时速度等于水平速度和竖直速度的矢量和.
3.平抛运动是一种匀变速曲线运动.
4.如果物体受到恒定合外力作用,并且合外力跟初速度垂直,形成类似平抛的匀变速曲线运动,只需把公式中的g换成a,其中a=F合/m.
说明:
1.干抛运动是学生接触到的第一个曲线运动,弄清其成固是基础,水平初速度的获得是同题的关键,可归纳众两种;
(1)物体被水平加速:水平抛出、水干射出、水平冲击等;
(2)物体与原来水平运动的载体脱离,由于惯性而保持原来的水平速度.
2.平抛运动的位移公式和速度公式中有三个含有时间t,应根据不同的已知条件来求时间.但应明确:平抛运动的时间完全由抛出点到落地点的竖直高度确定(在不高的范国内g恒定),与抛出的速度无关.