人教版小学数学五年级上册电子课本
人教版是由人民教育出版社出版的教科书版本是由课程考试教材研究所与课程考试教材研究开发中心编著,由新华书店集团发行。以下是小编汇总关于人教版小学数学五年级上册电子课本的相关内容,供大家参考!
人教版小学数学五年级上册电子课本
在线阅读请点击链接查看
查看完整版可微信搜索公众号【5068教学资料】,关注后对话框回复【1】获取五年级语文、五年级数学、五年级英语电子课本资源。
五年级数学《简易方程》知识点
1、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2;长方形的面积公式:s=ab
正方形的周长公式:c=4a;正方形的面积公式:s=a
3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度)
总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价)
总产量=(单产量)×(数量)单产量=(总产量)÷(数量)
数量=(总产量)÷(单价)
工作总量=(工作效率)×(工作时间)
工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数大数-相差数=小数小数+相差数=大数
一倍量×倍数=几倍量几倍量÷倍数=一倍量
几倍量÷一倍量=倍数
被减数=减数+差减数=被减数-差加数=和-另一个加数
被除数=除数×商除数=被除数÷商因数=积÷另一个因数
第五单元《多边形面积》知识点
1、长方形面积=长×宽字母公式:s=ab
长方形周长=(长+宽)×2字母公式:c=(a+b)×2
2、正方形面积=边长×边长字母公式:s=或者s=a×a
正方形周长=边长×4字母公式:c=4a或者c=a×4
3、平行四边形面积=底×高字母公式:s=ah
4、三角形面积=底×高÷2字母公式:s=ah÷2
5、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
6、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
7、等底等高的平行四边形面积相等。等底等高的三角形面积相等。
等底等高的三角形和平行四边形面积关系:三角形的面积是平行四边形面积的一半,平行四边形的面积是三角形面积的2倍。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
小学五年级数学复习方法
1 整理知识 ,归纳方法
知识整理主要对所复习的内容进行分类归纳,有序整理,使其系统化。主要操作是先让学生初步进行典型练习,寻找发现规律,在此基础上将零碎的知识系统梳理、综合,从而上升为可感受的规律和学习方法。教师在这一环节要把握要领,精讲善导,生生、师生合作,在练习的基础上引导学生采用表格、提纲或图等形式把有关的知识、规律和方法整理出来。比如:讲复合应用题时,应用题是一大难点,涉及类型较多,用到的数量关系也很多,这时我们就不应只是就题论题,而应教给学生一些分析应用题的方法。复合应用题解题方法就是分析法和综合法两种,要么从已知条件出发,推导出最后的问题;要么从问题出发,推到最原始的已知条件。再比如:列方程解应用题,我们可归纳几类,然后教会学生找等量关系的方法,这样就可把内容繁杂的知识归为几类,以一般的规律性知识去对待多种题目,从而把课本从厚教到薄。
2 查漏补缺,巩固和强化薄弱环节
查漏补缺是复习的重要内容。所以在复习前摸清学生中“漏”和“缺”非常重要,在复习课中应十分重视补缺漏和纠错误。摸清“缺漏”和常见的错误,平时摘记学生作业中的问题不失为一个好的方法,在复习课之前先根据相关内容和教学要求作摸底调查也非常必要。需要注意的是调查题应以母题考察为主,不出偏题怪题,题量也应适中。然后根据学生存在的问题,对易错、常错以及容易混淆的问题多变题型,让学生反复练习,以强化对薄弱环节的掌握和巩固。总之,要根据班上学生的实际水平进行变式练习和深化练习,找到学生知识的生长点。
3 加强知识间的联系,横向、纵向联系相整合
只有把知识之间的横向联系和纵向联系结合起来,才会对知识有充分的掌握。比如:应用题的教学,在初学过程中,纵向联系比较突出,分为整数、小数、分数几大类分别讲解,而在12册复习时横向联系比较突出,如何把二者结合起来?我认为可在复习12册时涉及到哪类应用题.就拿出初学这部分应用题的课本进行纵向复习。然后再复习12册相关内容。再比如:甲数是24,甲、乙两数的比是3:2。求甲、乙两数之和,我们可以列为24÷3×2+24(按份数解),也可以24÷3/2+24(按倍数解),还可以列为24×2/3+24(按分数解),还可以列为24÷3/5 (按比例分配),这样就加强了知识间的横向联系,把分数、份数、倍数、比例的知识结合起来,既扩展了学生的视野.又锻炼了学生从多角度思维问题的能力。再比如:一些应用题,既可用算术方法解,又可用方程解,可让学生用多种方法解,从多种角度加以分析,加强两种解法之间的联系,在比较中让学生选择适合自己的方法去解决问题。
4 分层教学,做好课后辅导工作
做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,想提高后进生的成绩,就要通过各种途径激发他们的求知欲和上进心,让他们自觉地把身心投放到学习中去。在此基础上,再教给他们学习的方法,提高他们的技能,并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
5 加强知识的拓展
复习要重温学过的知识,强化技能,但更重要的是应在原有知识的基础上体 现提高、发展,所以知识要向外延伸拓宽,让学生发散思维,提出见解性的问题,加强创新意识的培养。比如:复合应用题,我们总结了一些规律或解题思路,但复合应用题可能涉及好多数量关系,但它们用到的分析方法就只有分析法和综合法两种,我们可以用这两种方法去分析涉及不同数量关系的应用题,从而教会学生解答不同类型的复合应用题。实现对知识的扩展过程。再比如:几何初步知识的复习,课本上只出现了一些计算公式,而推导过程表现得不太具体。我们在复习这部分内容时就应该细讲一下推导过程,把课本上的知识展开。课本上出现的题较简单,或类型较少,而实际做题时发现学生好多题无法做,这也许是没把课本知识进行扩展的缘故。