最新高二数学课件简短

开鹏0分享

高二数学的课件如何写。语文是基础教育课程体系中的一门重点教学科目,其教学的内容是语言文化,其运行的形式也是语言文化。下面小编给大家带来关于最新高二数学课件简短,希望会对大家的工作与学习有所帮助。

最新高二数学课件简短

最新高二数学课件简短【篇1】

各位评委老师,大家好!

我是本科数学____号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与(小)值》

一、教材分析

1、教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:

(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

"教必有法而教无定法",只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

"授人以鱼,不如授人以渔",最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

最新高二数学课件简短【篇2】

今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

一、说教材

1、本节在教材中的地位和作用:

本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

2.教学目标确定:

(1)能力训练要求

①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

(2)德育渗透目标

①培养学生善于通过观察分析实物形状到归纳其性质的能力。

②提高学生对事物的感性认识到理性认识的能力。

③培养学生“理论源于实践,用于实践”的观点。

3.教学重点、难点确定:

重点:

1.棱锥的截面性质定理

2.正棱锥的性质。

难点:培养学生善于比较,从比较中发现事物与事物的区别。

二、说教学方法和手段

1、教法:

“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

2、教学手段:

根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

三、说学法:

这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

最新高二数学课件简短【篇3】

尊敬的各位教师,大家好,我是()。

今日,我说课的资料是()

对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。

一、说教材

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5。3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

二、说学情

合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能

会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

(二)过程与方法

经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

(三)情感态度价值观

经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

四、说教学重难点

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点

(一)教学重点

由正弦函数的图象得到正弦函数的性质。

(二)教学难点

正弦函数的周期性和单调性。

最新高二数学课件简短【篇4】

一、教材分析

1.教材的地位和作用

在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。

y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

2.教材的重点和难点

重点是对周期变换、相位变换规律的理解和应用。

难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

3.教材内容的安排和处理

函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

二、目的分析

1.知识目标

掌握相位变换、周期变换的变换规律。

2.能力目标

培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

3.德育目标

在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。

4.情感目标

通过学数学,用数学,进而培养学生对数学的兴趣。

三、教具使用

①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

四、教法、学法分析

本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。

以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。

最新高二数学课件简短【篇5】

一.说教材

1.1教材结构与内容简析

本节课为《__》§5.6函数图象的定位作图法的第一课时,主要内容为基本函数与一般函数间的图象平移变换规律。

函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。

1.2教学目标

1.2.1知识目标

⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与、符号的关系。

⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。

⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。

1.2.2能力目标

⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。

⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学地解决问题。

⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。

1.2.3情感目标

培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。

1.3教材重点和难点处理思路

重点:函数图象的平移变换规律及应用

难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数

教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”

为了突出重点、突破难点,在教学中采取了以下策略:

⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中、符号的关系,抽象、归纳出平移变换规律。

⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如的函数须提取前的系数化为的形式,从而真正认识解析式形式化的特点。

⑶、数学实验采取小组合作研究共同完成简单实验报告的形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。

二.说教法

针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。

本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。

另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。

总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。

三.说学法

“学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。

美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。

教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。

最新高二数学课件简短【篇6】

我说课的题目是全日制普通高级中学教科书(试验修订本.必修)《数学》第二册、第八章《圆锥曲线》、第一节《椭圆及其标准方程》。

一、概说:

1、教材分析:

椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

2、教学分析:

椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

3、学生分析:

高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

我设定的教学重点是:椭圆定义的理解及标准方程的推导。

教学难点是:标准方程的推导。

二、目标说明:

根据数学教学大纲要求确立“三位一体”的教学目标。

1、知识与技能目标:

理解椭圆定义、掌握标准方程及其推导。

2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

3、情感、态度和价值观目标:

(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

(2)进行数学美育的渗透,用哲学的观点指导学习。

三、过程说明:

依据“一个为本,四个调整”的新的教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:

(一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。

(二)在教学过程中的体现:

1、新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

2、新课呈现:

学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

3、巩固应用

根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

4、继续探究:

(1)观察椭圆形状,不同原因在哪里;

(2)改变绳长或变换焦点位置再画椭圆,发现关系;

(3)用几何画板交流画图,观察形状变化;

(4)如何描述形状变化?

引导学生探究__,开展研究性学习。

四、评价说明:

本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

五、说课总结:

这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。

    778917