四年级下册数学课件简洁

开鹏0分享

四年级数学的课件怎么写。教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,进行的具体设计和安排的一种实用性教学文书。下面小编给大家带来关于四年级下册数学课件简洁,希望会对大家的工作与学习有所帮助。

四年级下册数学课件简洁

四年级下册数学课件简洁(精选篇1)

教学目标

1、认识十万、百万、千万、亿和十亿等计数单位及相应的数位。

2、初步会读一般的多位数,并说出数的组成。(中间不含0的多位数)

3、能让学生感受到数学与日常生活的密切联系。

教学重难点

能正确读出大数,说出数的组成

能将大数正确的分级

教学工具

教学课件

教学过程

一、新课导入

情景引入

1、你知道吗?上海的一些区县的人口数(年)

南汇699119闸北区707869浦东新区1766946

2、揭示课题:今天我们就来认识这些大数。

二、新课探究:

探究一:认识十进制计数法。

1、2000年我国进行了第五次全国人口普查,有谁知道,我国目前的总人口呢?

请你读一读:1295330000

1)我们曾经认识了哪些数位?它们相对应计数单位是什么?

生:我们认识了个位、十位、百位、千位、万位、……它们相对应的计数单位是个、十、百、千、万、……

小结:正如我们所说的个、十、百、千、万、还有十万、百万、千万、亿、十亿、百亿、千亿……,都是计数单位。

2)一万一万的数,10个一万是多少?计数单位又是什么呢?

生:10个一万是十万,计数单位是十万。

3)10个十万呢?10个一百万呢?……

生1:10个十万是百万,计数单位是百万。

生2:10个一百万是一千万,计数单位是千万。

生3:10个一千万是亿,计数单位是亿。

4)每相邻两个计数单位之间的进率是几?

生:每相邻两个计数单位之间的进率都是10。

师:因为每相邻两个计数单位之间的进率都是10。所以叫十进制计数法。

探究二:介绍四位分级法。

1)为了读数方便,按照我国习惯,把数位进行了分级。

很久以前,我国的劳动人民就创造出了用四位一级的方法计数,即从右起每四位为一级。个、十、百、千是个级,个级表示多少“一”;万、十万、百万、千万是万级,万级表示多少个“万”;亿、十亿、百亿、千亿是亿级,亿级表示多少个“亿”。

2)我们来看上海的人口:16737700,这个数分为几级呢?万级上表示多少?个级呢?

16737700是由()个万和()个一组成的。

生:16737700,这个数分为二级

万级上表示1673个万,个级上表示7700个一。

三、课内练习:

练习一填空

(1)10个一万是(),10个一百万是()。

(2)10个一亿是(),10个十亿是()。

(3)一百万里有10个(),有100个()。

练习二

(1)2100350里有()个一。

(2)1023003405里有()个亿()个万和()个一。

课后小结

四、本课小结

在读大数时,利用数位分级的方法可以使我们更准更快的读数。

课后习题

五、课后作业

读读第10页中北京市、河南省、台湾省、浙江省、西藏自治区、澳门特别行政区等地的人口数。

四年级下册数学课件简洁(精选篇2)

教学目标:

1.了解数的产生,认识然数。认识亿级的数和计数单位“十亿”“百亿”“千亿”,掌握整数数位顺序表,认识十进制计数法。

2.在经历数的产生过程中,感受“一一对应”的思想和“实践第一”的辩证唯物主义观点。

3.使学生了解古老的数学文化,培养学生学习数学的兴趣,并渗透“生活中处处有数学”的思想。

教学重点:数的产生过程。

教学难点:理解十进制计数法的意义和十进位值制的价值。

教学准备:课件

教学过程:

一、数的产生

(一)导入

1.师:我们身边有很多数,找一找。(人数、男生数、女生数、年龄、身高、体

2.师:我们的生活离不开数,可是数的产生也经历了一个漫长的过程。

(二)了解古代计数方法

1.师:你知道远古时代的人是以什么为生吗?(打猎)对,他们以打猎为生,每次捕到猎物或捞到鱼需要知道捕获的数量,他们也需要数数,记录数的多少,但和那时的方法和现在不同,你知道他们用的是什么方法吗?(摆石子、刻痕、结绳计数)

2.课件出示:图片

师:比如,出去放牧时,每放出一只羊,就摆一个小石子,一共出去了多少只羊,就摆多少个小石子;放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。在木头上刻道来计捕鱼的条数的道理也是一样。刻道计数和结绳计数也是如此。

3.课件出示:

师:这是我国挖掘出来的“甲骨文”上的“数”字,这个字就源于结绳记事。

4.师:大家想,随着人们捕猎技术的进步,捕猎工具的发展,打到的猎物就会越来越多,相应的计数时,摆的石子就会越来越多,还是很不方便。怎么办?

【设计意图:通过介绍数的产生,感受“一一对应”的思想,体会古代计数方法的不便,产生对数字的需求。】

(三)符号记数

1.师:随着语言的发展,逐渐出现了数词。以后又随着文字的发展,逐渐发明了一些记数的符号,也就是最初的数字。

2.通过介绍古埃及人记数符号,揭示计数法就是表示计数单位的个数,体会没有位值带来的不便。

(1)课件出示:

师:这是古埃及人设计的计数单位。

(2)课件出示:

师:看看这个数用到了哪些计数单位,是多少?(4217)你是怎么想的。

(3)师:要想知道这个数表示多少,就必须看清有什么计数单位和有几个这样的计数单位。

(4)师:你能用古埃及的计数方法表示出太阳的直径1389000千米吗?试一试。

(5)课件出示:

(6)师:通过自己的尝试,你有什么感觉?(麻烦)

(7)师:请你想一想,这种计数方法为什么会这么麻烦?(每个计数单位都要用不同的符号,表示数时,有几个这样的计数单位就要画几次)

3.介绍阿拉伯数字

(1)课件出示:

(2)师:由于每个国家的文化背景不同,所以各国的数字也不一样。随着社会的发展,人们交流的增多,数字不同很不方便,就需要有统一的数字。这就是“阿拉伯数字”。阿拉伯数字是谁发明的?

公元八世纪前后,印度发明的数字传入了阿拉伯,在公元十二世纪又从阿拉伯传入欧洲,人们就误认为这些数字是阿拉伯人发明的,后来就叫“阿拉伯数字”。

【设计意图:在用古埃及记数符号表示太阳直径的过程中,体会没有位置制时记数的麻烦。通过介绍其他各国的记数符号,体会同意数字的必要性。】

二、认识自然数及新的计数单位等,整理数位顺序表,掌握十进制计数法。

(一)认识自然数

1.师:用这10个数字能表示多少数?

2.师:表示物体个数的1、2、3、4、5、6、7、8、9、10、11…都是自然数,一个物体也没有,用0表示,0也是自然数。所有的自然数都是整数。

3.看教材第17页

4.师:通过看书,你还了解到了自然数的哪些知识。

(二)十进制计数法的原则,体会位值制的价值。

1.师:为什么仅仅这10个数字就能表示出许许多多的数呢?比如:999,都是9,它们表示的意思一样吗?(9在不同的数位)

2.师:对,因为9在不同的位置,在右边表示9个一,在中间表示9个十,在左边9个百。同样的数字在不同的位置表示的大小就不同,这样不用发明那么多的符号了,记数也不用那么麻烦了。(课件演示)

3.师:如果再加1个石子,右边的9就达到10个,就可以放到中间,中间又够10组,就可以放到更高的位置,同样再够10组,就要再往左进一位。(课件演示)

4.师:这就是人类的进步,能用位置来区分计数单位的不同,它使记数变得简单。

【设计意图:以“999”为例,认识位值制,感受它给计数带来的便利。了解十进制计数法的原则,即“满十进一”。】

(三)认识新的计数单位,数位、数级,整理数位顺序表

1.师:这里的位置就是我们现在所说的“数位”,我们已经学过了哪些数位?它们的计数单位分别是什么?

2.师:你还能继续说出新的计数单位吗?它们所在的数位又叫什么呢?还有更高的吗?

3.师:这些计数单位之间有什么关系?每相邻两个计数单位间的进率是十,这种计数方法叫作十进制计数法。

4.师:我国习惯从个位起,每四位一级,分别是哪几个数级?

课件出示:数位顺序表

【设计意图:引导学生利用类推迁移规律认识新的计数单位、数位及数级,掌握数位顺序表和十进制计数法。】

三、知识运用

1.教材第22页第1题。

2.教材第22页第2题。

四年级下册数学课件简洁(精选篇3)

课程标准:

1.体会数学知识之间、数学与生活之间的联系,运用数学的思维进行思考,增强发现和提出问题,分析解决问题的能力。

2.从现实生活或情境中抽象出数学问题,初步形成模型思想。

教学目标:

1、学生通过小组合作,能够用自己的话说出什么是速度、时间与路程,知道速度的单位,会正确读写速度单位。

2、学生通过自主探究,构建速度×时间=路程的数学模型,理解速度、时间、路程之间的关系。

3、运用速度,时间与路程之间的关系解决一些简单的实际问题。

教学重点:

熟悉和掌握时间,速度和路程之间的关系

教学难点:

对速度,速度单位的熟悉和掌握

学情分析:

学生已经掌握了乘除法各部分间的关系,具备了除数是整十数除法的计算能力,能独立解答求每分钟行多少米的应用题,在已有的生活实践中,经历过路程、时间与速度,能模糊地感觉到它们之间可能存在一定关系,这些知识、能力及经验为学生掌握本节课的教学内容,建构行程问题中的数量关系模型,解决相应的应用题提供了前提条件。

教学策略:

1)助学单先行,以学定教,教师的教是为了促进学生的学。学生对这个课题已经知道多少、存在哪些障碍?如何做能协助学生轻松、有效的实现目标?这些是我进行教学方法设计的出发点与着力点。

2)体现“五主一辅”原则。本节课我遵循以学生为主体,以教师为主导,以思维训练为主线,以教材素材为主载,以学生情感的升华为主旨,以趣味性的故事情节和多媒体资源的声像图为辅的原则,创设问题情境,启迪学生的抽象思维,促进学生主动、和谐的发展,最后达到建模。

教学过程:

一、激趣导入

师:同学们,你和你的家人从网上买过东西吗?

师:那你们知道我们买过的东西是怎样交到我们的手里的吗?

师:其实快递也是物流,关于物流,老师这里有一段视频,让我们一起来了解一下。(学生观看视频)

师:正是因为物流中心有着这么多的作用,所以每天那都是车来车往,你看摩托车、大货车,小货车都在赶着往物理中心送货呢。

师:你发现了那些数学信息?

师:根据这两条信息你能提出一个什么数学问题?

生1:车站与物流中心相距多少米?

师:经过观察,咱们发现并提出了数学问题,下面咱们就分析和解决问题。

二、活动促思

1.探究速度时间与路程

师:同学们,这是助学单的第一个问题,先请大家回忆一下,你昨天是怎么想的?现在请大家在组内交流你的想法。

师:哪个小组愿意交流一下你们的想法?

学生小组展示,并且进行互动

师:同学们讨论的非常热烈,刚才大家提到一个非常关键的几个词(板书速度、时间、路程),请大家结合实例想一想什么是速度?什么是路程?

同学们紧互动交流。

总结:这样我们把每分钟、每小时等等这样的时间可以叫做单位时间单位时间行驶的米数或千米数就可以叫做(速度)

师:那速度单位应该怎么写呢?哪位同学愿意当小老师给大家讲一讲?

学生讲解

师:学会了吗?那老师可要考考大家。

课件出示:骑自行车走了9千米,这里的9千米表示的是骑自行车的速度。

师:看来表示速度的时候,一定要表示清楚那个单位时间行驶的速度

课件出示:刘翔的速度是9米/秒,蜗牛的速度是9米/时,两个速度相等

师:哪里错了?

师:我们如果让刘翔和蜗牛比赛,滴答一声谁出去了?谁还在后面慢慢的爬呀?

2.探究三者之间的关系

师:刚才我们认识了了速度、时间和路程,想一想老师接下来会提问什么问题?

学生猜测

师:没错,我们开始解决助学单的第三个问题,结合实例说一说速度、时间、路程之间的关系?现在先想一想,把自己的想法在组内交流一下。

学生互动交流

师:同学们经过互动交流,我们理清了速度、时间、路程之间的关系,我们一起来回顾一下。速度×时间=路程路程÷时间=速度、路程÷速度=时间,这就是今天我们要学习的内容。

师:现在请同桌两人再互相说一说。

三、拓展延趣

师:看大家学的这么认真,老师奖励大家去玩一个闯关游戏,看谁来到了我们的课堂上,可是可爱的熊大熊二被光头强绑架了,你们愿意参与营救活动吗?

四、巩固练习

1、第一关:先说说路程、速度、时间的关系再填写下表(课本100页的1)

师:这是三种交通工具的形式情况,仔细观察,解决第一个你打算用到了什么关系式?

生:因为路程÷时间=速度,所以用30÷2=15

师:第二个有关摩托车的,你能解决吗?第三个呢?

师:恭喜大家顺利闯过第一关,下面进入第二关

2、第二关:甲地离乙地有240千米,一辆汽车的行驶速度是60千米/时,从甲地到乙地行驶了4小时,

(1)60×4=240米

(2)240÷4=60千米/时

(3)240÷60=4小时

师:请问第一个表示什么意思?第二个?第三个?

师:同学们真厉害,这两道题都没难住大家,接下来我们接受更大的挑战,请看

3、第三关:平均每小时可以做纸花25朵,3小时可以做纸花多少朵?

生:25×3=75朵

师:说说你的想法

师:每小时做得朵数×时间=一共的朵数

小明打作文,平均每分钟打100个字,5分钟可以打完,他的作文有多少个字?

生:100×5=500(个)

师:你能像上个题一样说说这个题的关系式吗?

生:每分钟打的字数×时间=一共打字个数

师:恭喜同学们成功营救出熊大熊二,老师为你们点赞。

师:仔细观察刚才解决的这两个问题,然后回忆下刚上课时我们解决的这个问题,你发现他们之间有着怎样的联系?

师:老师等等你,仔细考虑一下

师:在数学上能用联系的眼光看待问题,这对我们的数学学习非常的重要。

师:这么多不同的数学问题,都可以归结到一个关系式上。希望你带着发现的眼睛继续去寻找生活中的数学问题。

五、总结回顾

师:这节课马上要结束了,回一下这节课,你有什么收获?

师:同学们的收获可真不少,课下请把本节课知识整理在思维导图本上,善于总结的孩子才会有更大的进步。

四年级下册数学课件简洁(精选篇4)

教学内容:

课本62—64页

教学目标:

1、在实际情景中,理解路程、时间与速度之间的关系

2、根据路程、时间与速度的关系,解决生活中简单的问题

3、感受数学知识与生活的密切联系,树立生活中处处有数学的思想

教学重点:

根据路程、时间与速度的关系解决生活中的实际问题。

教学过程:

一、创设情境,激发学生的学习兴趣。

出示刘翔跑步图片

师:同学们,图中跑步的是谁呀?你们认识吗?(刘翔)

师:对了,这就是我们中国的飞人刘翔。

师:同学们,刘翔跑得怎么样?(很快)这里的快指的是刘翔的什么快?(速度)(出示成绩表)

师:从成绩单中,他们都跑的这110米是什么意思?(出示:路程)

那么他们的12.91秒,13.18秒,13.20秒这些是什么?(出示:时间)同学们,通过这个表格来看,为什么是刘翔赢了呢?(他用的时间最少)师:(出示并观察这两个表格),那么通过刚才的两次比较,你发现速度的快慢与什么有关系?(时间、路程有关系)到底什么是速度?速度与路程和时间又有什

么关系?今天这节课就一起来研究(板书:路程时间与速度)

二、师生互动、探究新知。

1、师:刚才呀,咱们在比快慢的时候知道了如果路程相等的时候,谁用的时间少,谁就快。如果路程跟时间都不相同呢?怎么比快慢?下面请看这样一组信息:小卡车2小时行驶了120千米,大客车3小时行驶了210千米,哪辆车跑的比较快?

(1)师:你们能从图中了解到哪些数学信息?

哪辆车跑的快些?你们能试着解决吗?

(2)你可以通过计算,也可以借着画线段图的方法来分析数量关系,解决问题,清楚了吗?做完后可以和同桌交流,开始

(3)汇报各自的解决办法。(指名板演)

(4)同学们比的都不错,那么刚才老师在巡视的过程中,发现同学们都没有用线段图,其实呀,画线段图可以帮助我们正确的理解数量关系,解决问题,那么怎么画线段图呢?你们想不想学习呀?

师:好,请看。我们先画一段线段,用它表示小卡车行驶的路程,小卡车行驶了多少千米呀?(在黑板上画下表示120千米的线段)

然后我们再画一条线段,用来表示大客车行驶的路程,那么在画的时候要注意左端对齐,那么同学们,跟这条线段相比,应该画多长呀?

强调:应该按照一定的比例适当的长些。

(黑板上画了210千米长的线段)

那么大客车行使了多少千米?(210千米、标上)

师:小卡车的120千米是多少时间行驶的?(生反馈:2小时)

师:那么怎么样在线段图上表示它1小时行驶的路程?

师:恩,在一半的位置来画,就是把线段怎么样?

师:平均的分成两半

(教师在黑板上分)那么这里的每一份表示小卡车1时行驶的路程,我们这样来表示。那么怎么样在线段图上表示大客车1时行驶的路程呢?

(在黑板上比划了不同的3段)可以吗?怎么分?一起说。

师:把它平均分成3份,同样,这是每一份表示大客车1时行驶的路程,同样,我们取这一段来表示。

(教师在黑板上分)那么从线段图上来看,哪辆车1时行驶的路程长?师:大客车行驶的路程长。大客车就跑的快。

2、讲解速度的读法、写法

师:在刚才的比较过程中,我们无论是通过计算,还是通过画线段图,都是比较两辆车多长时间行驶的路程?

师:对了,他们每小时或1时行驶的路程就是他们的速度,那么像这样小卡车1小时行使了60千米,也就是小卡车的速度是60千米/时,

(板书60千米/时)这就是我们今天要学习的用来表示速度的单位,谁来说一说这个单位是是由哪些我们学过的单位组成的?

师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作每60千米每时。(指名读)

你知道每小时60千米表示什么吗?

那么你能不能这样来表示出大客车的速度?在练习本上写一写(指名板演)

3、经历公式形成的过程。

师:很好,刚才呀,咱们求出了小卡车和大客车的速度,那么结合这个算式和线段图来看一看,速度和路程还有时间有什么样的关系?和你的伙伴交流交流。好,开始。

(汇报,结合120÷2=60(千米)来讲解。板书:速度=路程÷时间)让学生读一读。

4、理解单位时间,理解速度的意义。

同学们,那么通过这个关系式来看,如果要想求出速度的话,我们需要知道什么?(路程与时间)知道了相对应的路程和时间,我们就可以求出速度了。好,请同学们在下面小声的读题,然后口答下列各题中物体的速度,开始。师:请写出下面各物体的速度

①一列火车2时行驶180千米,这列火车的速度是_________

②自行车3分钟行驶600米,这辆自行车的速度是_________

③一名运动员8秒跑了80米,这名运动员的速度是________

师:我们一起来看下这三个速度,它们分别是这些物体在多长时间内行驶的路程?

师:其实他们每时,每分,每秒行驶的路程就是他们的速度,我们把这样的像一时、一分、一秒…这样的时间叫做单位时间。你对速度是怎样理解的?物体在单位时间(一时,一分,一秒…)内所行驶的路程,叫做速度。自己练习说一说。

5、经历公式形成的过程。

现在咱们知道了什么是速度,也知道了速度等于路程除以时间,那么同学们,时间该怎么求?路程又该怎么求呢?我们一起结合下面的问题来试一试。(出示题目1)你能从中获得什么数学信息?

那么根据这些信息,你能解决这个问题吗?

你能说一说求路程的关系式是怎么样的?

时间=路程÷速度

路程=时间×速度

师:同学们太厉害了,通过这个关系式我们可以看出要想求出速度,就必须知道相对应的路程和?(时间)

师:那么求时间和求路程也是一样的,必须要知道相对应的另两个量,你看,路

程,时间和速度的关系是多么的密切呀。

三、实际运用

1、感受生活中的速度

师:速度不仅在咱们的课堂中有,在咱们的生活中也是无处不在的,咱们一起到生活中感受一下速度,好吗?读一读,感受一下。出示看一看图片让学生看一看读一读。

2、解决问题

小红和小明约好到少年宫玩,如果她俩同时从家里出发,谁会先到达少年宫呢?

(出示只有距离没有其它条件的题目)

师:那么同学们,你说如果看路程的话,能不能确定谁先到少年宫?师:还需要知道什么?

四年级下册数学课件简洁(精选篇5)

设计理念:

创设情境,激发学学生参与探究的兴趣和,引导学生在自主探索、合作交流的过程中主动构建数学知识模型,并运用建构的规律解决问题,在建构、运用过程中渗透数学思想和方法。

教学目标:

1、经历探索的过程,发现商不变的规律。

2、能运用商不变的规律,进行除法的简便计算。

3、培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

4、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,培养学生爱数学的情感。

教学重点:

理解并归纳出商不变的规律。

教学难点:

会初步运用商不变的规律进行一些简便计算。

教具学具:

小黑板、计算题卡。

教学过程:

一、创设情境,激发兴趣。

师:同学们注意了,我讲一个故事给你们听。你们看过《西游记》吗?里面的内容很精彩,老师知道同学们都很喜欢里面的孙悟空,今天老师就给大家讲个孙悟空分桃子的故事。孙悟空西天取经回来后,就迫不及待的来到花果山看他的孩儿们,它给孩儿们带来礼物——桃子,他对身边的两只猴子说:“把8个桃子平均分给你们2只猴子吧!”这两只猴子连连摇头:“太少了!太少了!”外面的猴子听说后又进来一些猴子。孙悟空就说:“那好吧,把80个桃子平均分给20只猴子,怎么样?”猴子们得寸进尺,挠挠头皮,试探地说:“大王,再多点行不行啊?”所有的猴子都听到分桃子了,一起跑到孙悟空身边。孙悟空一拍胸脯,显示出慷慨大度的样子:“那就把800个桃子平均分给200只猴子,你们总该满意了吧?小猴子们笑了,孙悟空也笑了。

[设计意思:通过学生喜爱的故事,引入新课,激发学生投入学习的兴趣,也给学生创设一个宽松的课堂氛围,并引导学生在故事情境中发现问题,提出问题,从而为解决问题做好铺垫。]

二、探究规律,发现规律。

㈠师:同学们,小猴子和孙悟空都笑了,谁的笑是聪明的一笑,为什么?

学生思考后回答。

(预设)生1:……猴王的笑是聪明的一笑,桃子的总数与猴子的总只数变了,但每只猴子分到的桃子个数没有变。

生2:……猴王的笑是聪明的一笑,因为猴王把小猴子给骗了,每只小猴子还是分到4个桃子。

师:你(们)是怎样看出来的?从哪儿看出来的?

(预设)生:……(计算的)

师:能列出算式吧吗?

引导学生列出算式,并结合板书把算式补充完整。

板书①8÷2=4、②80÷20=4、③800÷200=4

㈡1、这些都是什么运算的算式,第一竖的数叫什么?第二竖的数又叫什么?第三竖的数又叫什么

2、师:请同学们仔细观察这组算式,你发现了什么?

〔预设意图:这样预设,给学生创设发挥的空间,要比直接引导学生从上往下或从下往上观察预留的思维空间要大,课堂上观察学生反应情况,学生发现不了,再逐步引导。〕

生独立观察思考。

师:你有重要发现吗?把你的重要发现说一说好吗?

小组交流,师巡视辅导。

全班交流汇报。

生:我发现它们的得数都是4,商不变。

师:她发现一个非常重要的数学现象,商不变。(板书:商不变)

师:这节课,我们就来研究“商不变的规律”。(板书课题)

师:商不变,谁发生了变化?怎样变的?

(预设)生1:被除数和除数同时乘上了10(扩大10倍)。

师:这个同学说了一个很好的词,你们知道是什么词吗?“同时”是什么意思?你能说一说吗?

生:……

师:“同时”指被除数和除数都扩大了10倍。(而不是一个扩大,一个缩小,或一个扩大,一个不变。)

(预设)生2:②式和①式比较……

师:他用一个非常好的方法发现规律,用两个算式进行比较,这是多好的学习方法呀!你能像他这样去发现其它算式的一些规律吗?

生:……

师:同学们发现那么多的规律,真聪明!能用一句话概括你发现的规律吗?

生:……

师:被除数和除数,同时乘10,100,1000,商不变。(板书)

师:同学们刚才是从上往下看,发现了这么重要的规律,那么从下往上看,有规律吗?

生汇报,师板书。

师:被除数和除数同时除以10、100、1000商不变

师:是不是只有被除数和除数同时乘或除以10,100,1000,商不变呢?那你能验证吗?请你多写几个商是4的除法算式,看看有没有这个规律。

生写算式,师出示

师:请同学们仔细观察这组算式,符合这个规律吗?

生观察,汇报。

师引导:看来这里扩大和缩小的不一定是整十整百,整千的位数,也可以是1倍、2倍、3倍、4倍等,那么我们就要把10倍、100倍……改成“相同的倍数”了。

师在板书上改写。

师:这里所有数都可以吗?

(预设)生:……(零除外)

师:为什么要零除外?

生:因为零乘任何数都得零,零不能当除数。

师:我们发现的就是重要的“商不变的规律”,这个规律在所有除法中都适用吗?

师:请请同们列一组算式验证一下。

生验证,指名汇报。

师小结:看来这个规律对所有除法都适用。

[设计意图:这一环节通过学生自主探索,小组合作,全班交流三个层次,引导学生逐步构建“商不变的规律”这一数学知识的模型,让学生经历“发现----探索----构建”的学习过程,培养学生学数学的方法。]

三、应用规律,拓展延伸。

师:同学们对这一规律理解了吗?智慧老爷爷想考考你到底掌握的怎么样?可以吗?

1、请你计算。

8000÷2000=

80……0÷20……0=、在板书下补充

100个0、100个0

生做过后师:你们是一部高级电脑,比普通电脑快多了,看来这个规律的作用太大了,这么大的数同学们都能计算出来。

2、P75T1板书到小黑板。

3、从上到下,先算出每组题中第一题的商,然后很快地写出下面两组的商。

72÷9=36÷3=80÷4=720÷90=360÷30=800÷40=7200÷900=3600÷300=8000÷400=

4、判断,下面的计算对吗?为什么不对?

14÷2=715÷3=5

(14×2)÷(2÷2)=7()、150÷30=5()

(14×5)÷(2×3)=7()、150÷30=50()

(14×0)÷(2×0)=7()、1500÷300=500()5、比赛。

比一比,在1分钟内看谁写出相等的除法算式最多。赛后,让第1名同学说说取胜秘诀。

6、P75页,观察与思考

感受规律的作用真大(可以使计算简便)。

[设计意图:设计不同层次的变式练习,突破难点,让学生进一步能理解运用所探索的规律,以达到灵活运用知识解决问题,培养学生应用意识和能力。]

四、总结全课,概括梳理。

师:这节课,你学会了什么,有什么新发现?数学有趣吗?

师总结:通过同学们的探索,发出了那么重要“商不变规律”,并且那么有用,同学们真了不起!下节课,你们的老师将带着你们把它运用到竖式计算中,还可以使竖式计算简便呢!

五、作业

列举出几组数学算式,说一说商不变的规律。

板书设计:

商不变的规律

①8÷2=4、6÷3=2

②80÷20=4、24÷12=2

③800÷200=4、48÷24=2

8000÷2000=4、120÷60=2

80……0÷20……0=4

100个0、100个0被除数和除数同时扩大或缩小相同的倍数,商不变。

    758277