数学四年级上册课件简短
四年级数学的课件很重要的。语文是基础教育课程体系中的一门重点教学科目,其教学的内容是语言文化,其运行的形式也是语言文化。下面小编给大家带来关于数学四年级上册课件简短,希望会对大家的工作与学习有所帮助。
数学四年级上册课件简短【篇1】
教学目标:
1、在解决问题和相互交流的过程中,体会在一个有括号的算式里,先算括号里的算式的必要性。
2、经历与他人交流各自算法的过程,加强小组合作。
3、灵活运用所学计算方法解决问题,感受数学与生活的密切联系,增强应用数学意识。
教学重点:
理解含有括号的四则运算的顺序。
教学难点:
掌握含有括号的四则运算的顺序。
教具学具:
课件
教学设计:
一、复习导入。
1、口算。100+0=0÷100=等。
2、说出下面各题的运算顺序。
⑴80-42+12480÷60×2等。
小结:在没有括号的算式里,如果只有加、减法,或者只有乘、除法,要()按顺序计算。
⑵75-15×440÷4+6等。
小结:在没有括号的算式里,如果既有加、减法,又有乘、除法,要先算()法,再算()法。
⑶(12+4)×2200÷(40-15)×2。
小结:在含有小括号的算式里,要先算()里面的,再算()外面的。
3、我们学过的()、()、()、()四种运算统称四则运算。今节课我们继续来学习它的运算顺序。(板书课题)
二、探究新课。
(一)出示:96÷12+4×2
1、小组内讨论,说说计算顺序。
2、汇报讨论结果。(指名说,师板书。)
(二)变式:96÷(12+4)×2。探究有小括号的计算顺序。
1、问:如果要求先算加法,再算除法,最后算乘法,需要在原式里添上什么数学符号?(小组合作探究)
2、小组合作完成计算后,指名学生到黑板上扮演。
3、点评,明确:要先算小括号里面的。
(三)介绍中括号“[]”,变式:96÷[(12+4)×2],探究有中括号的算式的运算顺序。
1、认识中括号。
2、在老师引导下明确运算顺序。板书:96÷[(12+4)×2]
①
②
③
3、放手让学生合作完成计算,师巡视辅导。
4、指名板演后,师生共同订正,明确运算顺序,并在书上找出来齐读两遍。
三、巩固练习。
1、课本第9页的做一做。
2、一个池塘的长是60米,宽是40米,每米需要三根竹棍做篱笆,共需要篱笆多少根?(要求列综合算式解答)
四、拓展提高:根据运算顺序添上小括号或中括号。
⑴32×800-400÷25先减,再乘,最后除;
⑵32×800-400÷25先除,再减,最后乘;
⑶32×800-400÷25先减,再除,最后乘;
⑷32×800-400÷25先乘,再减,最后除;
五、课堂小结。
数学四年级上册课件简短【篇2】
一、教学目标:
1.通过学习,使学生掌握四则运算和含有小括号的四则混合运算顺序,并学会正确计算。
2.通过学习,养成认真审题,规范书写,仔细计算的习惯。
二、教学重难点:
使学生掌握含括号的四则运算。
三、教学设备:
幻灯片、小黑板。
四、教学过程:
复习准备
星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买一张成人票需要24元,儿童票半价。购买门票需要花多少钱?学生在练习本上解答此问题。同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)242424÷2242412481260(元)24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×224÷2481260(元)24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。这样的综合算式的运算顺序是什么?学生总结运算顺序。
新课教学
1.(小黑板出示)先读出下面各题的运算顺序,再算出来。120-144÷18+35(58+37)÷(64-45)
(1)学生口述运算顺序,教师用框线图表示顺序。
(2)集体校对,说明注意点。
2.教学例1。
(1)把准备题
①中的144改写成36×4的形式,引出例1,120-36×4÷18+35
(2)问这道题中应先算什么?再算什么?乘除法在一起,你认为应当怎样计算?
(3)全班同学统练,一生板演,集体校对,讲评。
3.教学例2。
(1)把准备题②中的45改写成9×5的形式,引出例2,(58+37)÷(64一9×5)(2)比较例2与准备题的异同,确定运算顺序。(3)独立完成并自我评价,指名让一名学生向全班作汇报。
4.练习“试一试”。
(1)板书:1515-15×(94+54÷9)
(2)同桌同学互相交流,并独立进行计算。
(3)用投影校对典型错例,归纳并作出鼓励性评价。
5.师生共同归纳小结。
巩固练习
1.投影出示,让全体学生做填空题。
(1)280-43×6+540÷36可以同时计算的是()和()。
(2)120+(28×5-120)÷10第一步应该算()。
(3)100-(80+480÷24)×8第二步应该算()。
(4)317+104÷13×52一270最后一步应该算()。
2.课本“练习”第1题,先说出下面各题的运算顺序,再计算。
(1)请每位学生首先认真对4个小题进行审题。
(2)学生独立完成各题。
(3)全班集体校对,指出错误原因并订正。总结通过本节课的学习,特别是再看例1、例2使我们明白,在四则混合运算中,我们应先看清楚,再想明白,然后做正确。
数学四年级上册课件简短【篇3】
教学目标
1、认识十万、百万、千万、亿和十亿等计数单位及相应的数位。
2、初步会读一般的多位数,并说出数的组成。(中间不含0的多位数)
3、能让学生感受到数学与日常生活的密切联系。
教学重难点
能正确读出大数,说出数的组成
能将大数正确的分级
教学工具
教学课件
教学过程
一、新课导入
情景引入
1、你知道吗?上海的一些区县的人口数(年)
南汇699119闸北区707869浦东新区1766946
2、揭示课题:今天我们就来认识这些大数。
二、新课探究:
探究一:认识十进制计数法。
1、2000年我国进行了第五次全国人口普查,有谁知道,我国目前的总人口呢?
请你读一读:1295330000
1)我们曾经认识了哪些数位?它们相对应计数单位是什么?
生:我们认识了个位、十位、百位、千位、万位、……它们相对应的计数单位是个、十、百、千、万、……
小结:正如我们所说的个、十、百、千、万、还有十万、百万、千万、亿、十亿、百亿、千亿……,都是计数单位。
2)一万一万的数,10个一万是多少?计数单位又是什么呢?
生:10个一万是十万,计数单位是十万。
3)10个十万呢?10个一百万呢?……
生1:10个十万是百万,计数单位是百万。
生2:10个一百万是一千万,计数单位是千万。
生3:10个一千万是亿,计数单位是亿。
4)每相邻两个计数单位之间的进率是几?
生:每相邻两个计数单位之间的进率都是10。
师:因为每相邻两个计数单位之间的进率都是10。所以叫十进制计数法。
探究二:介绍四位分级法。
1)为了读数方便,按照我国习惯,把数位进行了分级。
很久以前,我国的劳动人民就创造出了用四位一级的方法计数,即从右起每四位为一级。个、十、百、千是个级,个级表示多少“一”;万、十万、百万、千万是万级,万级表示多少个“万”;亿、十亿、百亿、千亿是亿级,亿级表示多少个“亿”。
2)我们来看上海的人口:16737700,这个数分为几级呢?万级上表示多少?个级呢?
16737700是由()个万和()个一组成的。
生:16737700,这个数分为二级
万级上表示1673个万,个级上表示7700个一。
三、课内练习:
练习一填空
(1)10个一万是(),10个一百万是()。
(2)10个一亿是(),10个十亿是()。
(3)一百万里有10个(),有100个()。
练习二
(1)2100350里有()个一。
(2)1023003405里有()个亿()个万和()个一。
课后小结
四、本课小结
在读大数时,利用数位分级的方法可以使我们更准更快的读数。
课后习题
五、课后作业
读读第10页中北京市、河南省、台湾省、浙江省、西藏自治区、澳门特别行政区等地的人口数。
数学四年级上册课件简短【篇4】
教学目标:
1.了解数的产生,认识然数。认识亿级的数和计数单位“十亿”“百亿”“千亿”,掌握整数数位顺序表,认识十进制计数法。
2.在经历数的产生过程中,感受“一一对应”的思想和“实践第一”的辩证唯物主义观点。
3.使学生了解古老的数学文化,培养学生学习数学的兴趣,并渗透“生活中处处有数学”的思想。
教学重点:数的产生过程。
教学难点:理解十进制计数法的意义和十进位值制的价值。
教学准备:课件
教学过程:
一、数的产生
(一)导入
1.师:我们身边有很多数,找一找。(人数、男生数、女生数、年龄、身高、体
2.师:我们的生活离不开数,可是数的产生也经历了一个漫长的过程。
(二)了解古代计数方法
1.师:你知道远古时代的人是以什么为生吗?(打猎)对,他们以打猎为生,每次捕到猎物或捞到鱼需要知道捕获的数量,他们也需要数数,记录数的多少,但和那时的方法和现在不同,你知道他们用的是什么方法吗?(摆石子、刻痕、结绳计数)
2.课件出示:图片
师:比如,出去放牧时,每放出一只羊,就摆一个小石子,一共出去了多少只羊,就摆多少个小石子;放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。在木头上刻道来计捕鱼的条数的道理也是一样。刻道计数和结绳计数也是如此。
3.课件出示:
师:这是我国挖掘出来的“甲骨文”上的“数”字,这个字就源于结绳记事。
4.师:大家想,随着人们捕猎技术的进步,捕猎工具的发展,打到的猎物就会越来越多,相应的计数时,摆的石子就会越来越多,还是很不方便。怎么办?
【设计意图:通过介绍数的产生,+
数学四年级上册课件简短【篇5】
教学目标:
1、使学生通过实际测量充分感知四边形内角和为360度这一规律。
2、提高学生综合运用知识解决问题的能力。。
3、通过动手测量,使学生经历充分感知四边形内角和为360度这一规律的全过程,并渗透归纳、猜想和验证的数学思想。
4、使学生感悟到数学的神奇和奥妙,增强学好数学的信心。
教学重难点:感知四边形内角和是360度这一规律。
教具准备:量角器。
教学过程:
一、情境引入,回顾再现
师:这节课我们继续来研究四边形。
板书课题:平行四边形和梯形。
二、分层练习,强化提高
展示一个平行四边形,请学生用量角器测量一下每个角的度数。再把四个角的度数相加,是多少度呢?这是一个四边形,其他的四边形是什么情况呢?
小组研究,总结规律:
1.组内分工测量75页8题中的每个四边形的各个角的度数。
2.汇总填表75页9题。
3.共同讨论总结规律,全班汇报交流。
出示图形,小组内可再任意画一个四边形试一试。
小结:任意一个四边形四个角的度数之和都是360度。
三、自主检测,评价完善
1.在表中适当的空格内画“∨”。
2.在图中填写合适的四边形名称。
四、归纳小结,课外延伸
这节课有什么收获?
感受“一一对应”的思想,体会古代计数方法的不便,产生对数字的需求。】
(三)符号记数
1.师:随着语言的发展,逐渐出现了数词。以后又随着文字的发展,逐渐发明了一些记数的符号,也就是最初的数字。
2.通过介绍古埃及人记数符号,揭示计数法就是表示计数单位的个数,体会没有位值带来的不便。
(1)课件出示:
师:这是古埃及人设计的计数单位。
(2)课件出示:
师:看看这个数用到了哪些计数单位,是多少?(4217)你是怎么想的。
(3)师:要想知道这个数表示多少,就必须看清有什么计数单位和有几个这样的计数单位。
(4)师:你能用古埃及的计数方法表示出太阳的直径1389000千米吗?试一试。
(5)课件出示:
(6)师:通过自己的尝试,你有什么感觉?(麻烦)
(7)师:请你想一想,这种计数方法为什么会这么麻烦?(每个计数单位都要用不同的符号,表示数时,有几个这样的计数单位就要画几次)
3.介绍阿拉伯数字
(1)课件出示:
(2)师:由于每个国家的文化背景不同,所以各国的数字也不一样。随着社会的发展,人们交流的增多,数字不同很不方便,就需要有统一的数字。这就是“阿拉伯数字”。阿拉伯数字是谁发明的?
公元八世纪前后,印度发明的数字传入了阿拉伯,在公元十二世纪又从阿拉伯传入欧洲,人们就误认为这些数字是阿拉伯人发明的,后来就叫“阿拉伯数字”。
【设计意图:在用古埃及记数符号表示太阳直径的过程中,体会没有位置制时记数的麻烦。通过介绍其他各国的记数符号,体会同意数字的必要性。】
二、认识自然数及新的计数单位等,整理数位顺序表,掌握十进制计数法。
(一)认识自然数
1.师:用这10个数字能表示多少数?
2.师:表示物体个数的1、2、3、4、5、6、7、8、9、10、11…都是自然数,一个物体也没有,用0表示,0也是自然数。所有的自然数都是整数。
3.看教材第17页
4.师:通过看书,你还了解到了自然数的哪些知识。
(二)十进制计数法的原则,体会位值制的价值。
1.师:为什么仅仅这10个数字就能表示出许许多多的数呢?比如:999,都是9,它们表示的意思一样吗?(9在不同的数位)
2.师:对,因为9在不同的位置,在右边表示9个一,在中间表示9个十,在左边9个百。同样的数字在不同的位置表示的大小就不同,这样不用发明那么多的符号了,记数也不用那么麻烦了。(课件演示)
3.师:如果再加1个石子,右边的9就达到10个,就可以放到中间,中间又够10组,就可以放到更高的位置,同样再够10组,就要再往左进一位。(课件演示)
4.师:这就是人类的进步,能用位置来区分计数单位的不同,它使记数变得简单。
【设计意图:以“999”为例,认识位值制,感受它给计数带来的便利。了解十进制计数法的原则,即“满十进一”。】
(三)认识新的计数单位,数位、数级,整理数位顺序表
1.师:这里的位置就是我们现在所说的“数位”,我们已经学过了哪些数位?它们的计数单位分别是什么?
2.师:你还能继续说出新的计数单位吗?它们所在的数位又叫什么呢?还有更高的吗?
3.师:这些计数单位之间有什么关系?每相邻两个计数单位间的进率是十,这种计数方法叫作十进制计数法。
4.师:我国习惯从个位起,每四位一级,分别是哪几个数级?
课件出示:数位顺序表
【设计意图:引导学生利用类推迁移规律认识新的计数单位、数位及数级,掌握数位顺序表和十进制计数法。】