初一到初三数学知识点总结
科学是现代最主要的知识形式。技术是将科学应用于生产和社会生活的重要手段。语言是知识传递和沟通的主要工具。下面就让小编给大家带来初一到初三数学知识点总结,希望大家喜欢!
初一到初三数学知识点总结1
一、有理数加减法
1.同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
2.互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
二、乘除法法则
1.两数相乘,同号得 正 ,异号得 负 ,并把绝对值 相乘 。 0乘以任何数,都得 0 。
2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为 偶数 时,积为正;负因数的个数为 奇数 时,积为负。
3.两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 。0除以任何一个不等于0的数,都得 0 。
4.有理数中仍然有:乘积是1的两个数互为 倒数 。
5.除以一个不等于0的数等于乘以这个数的 倒数 。
三、 乘方
乘方定义:求n个相同因数的积的运算,叫做乘方。
底数是a,指数是n,幂是乘方的结果;读作:的n次方 或 的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
四、 运算律及混合运算
1.加法交换律:a+b=b+a
1.加法交换律:a+b=b+a
2.乘法交换律:a·b=b·a
3.加法结合律:a+(b+c)=(a+b)+c
4.乘法结合律:a·(b·c)=(a·b)·c
5.乘法分配律:a·(b+c)=ab+ac
6.有理数混合运算顺序:先乘方;再乘除;最后算加减。
7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行 。
8.同级运算, 从左到右进行 。
五、 近似数
1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。
2.近似数的分类
(1)具体近似数(如30.2、58.0 …)
(2)带单位近似数(如2.4万…)
(3)科学记数法
3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。
4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。
求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。
例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。
初一到初三数学知识点总结2
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程。
2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:
(1)方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
(2)方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
二、等式的性质
(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c
(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc
三、移项法则:
把等式一边的某项变号后移到另一边,叫做移项。
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变
五、解方程的一般步骤
1.去分母(方程两边同乘各分母的最小公倍数)
2.去括号(按去括号法则和分配律)
3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4.合并(把方程化成ax=b(a≠0)形式)
5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。
六、用方程思想解决实际问题的一般步骤
1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。
2.设:设未知数(可分直接设法,间接设法)。
3.列:根据题意列方程。
4.解:解出所列方程。
5.检:检验所求的解是否符合题意。
6.答:写出答案(有单位要注明答案)。
初一到初三数学知识点总结3
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的`内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
20.多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
初一到初三数学知识点总结4
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
4、特殊位置的点的坐标的特点:
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
5、点到轴及原点的距离
点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。