最新数学八年级下册课件怎么写
八年级的数学课件怎么写的。语文是基础教育课程体系中的一门重点教学科目,其教学的内容是语言文化,其运行的形式也是语言文化。下面小编给大家带来关于最新数学八年级下册课件怎么写,希望会对大家的工作与学习有所帮助。
最新数学八年级下册课件怎么写(篇1)
一次函数
(1)正比例函数:一般地,形如y=kx(k是常数,k>0)的函数,叫做正比例函数,其中k叫做比例系数;
(2)正比例函数图像特征:一些过原点的直线;
(3)图像性质:
①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;
②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;
(4)求正比例函数的解析式:已知一个非原点即可;
(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)
(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;
(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)
(8)一次函数图像特征:一些直线;
(9)性质:
①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)
②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;
③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;
④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);
⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);
(10)求一次函数的解析式:即要求k与b的值;
(11)画一次函数的图像:已知两点;
用函数观点看方程(组)与不等式:
(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;
(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;
(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;
(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;
最新数学八年级下册课件怎么写(篇2)
全等三角形
一、全等三角形:
1.定义:能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的性质
①全等三角形的对应边相等、对应角相等。
②全等三角形的周长相等、面积相等。
③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)
角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)
斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)
4.证明两个三角形全等的基本思路:
二、角的平分线:
1.(性质)角的平分线上的点到角的两边的距离相等
2.(判定)角的内部到角的两边的距离相等的点在角的平分线上
三、学习全等三角形应注意以下几个问题:
1.要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
2.表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
3.有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等;
4.时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”;
最新数学八年级下册课件怎么写(篇3)
分式除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
提示:
(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,然后再相乘;
(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变
(3)分式的除法可以转化为分式的乘法运算;
(4)分式的乘除混合运算统一为乘法运算。
①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;
②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;
③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。
最新数学八年级下册课件怎么写(篇4)
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
最新数学八年级下册课件怎么写(篇5)
基础知识梳理
(一)基本概念
1、“全等”的理解全等的图形必须满足:
(1)形状相同的图形;
(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;
(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。SSS
(2)两角和它们的夹边对应相等的两个三角形全等。ASA
(3)两角和其中一角的对边对应相等的两个三角形全等。AAS
(4)两边和它们的夹角对应相等的两个三角形全等。SAS
(5)斜边和一条直角边对应相等的两个直角三角形全等。HL
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:角的内部到角的两边的距离相等的点在角的平分线上
(二)灵活运用定理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的.对边相等(AAS)
(2)已知条件中有两边对应相等,可找:
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找:
①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
1、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);
2、回顾三角形判定公理,搞清还需要什么;
3、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
最新数学八年级下册课件怎么写(篇6)
一、实数的概念及分类
1、实数的分类
一是分类是:正数、负数、0;
另一种分类是:有理数、无理数
将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
最新数学八年级下册课件怎么写(篇7)
1.肯定形式:主语+动词过去式+其它。
2.否定形式:主语+didn't +谓语动词原形+其它。
3.一般疑问句:①Did+主语+谓语动词原形+其它 ②Was/Were+主语+表语
4.特殊疑问句:疑问词+ did+主语+动词原形+其它
5.一般过去时记忆口诀
一般过去时并不难,过去动作、状态记心间。
动词要用过去式,时间状语句末站。
否定句很简单,didn't 站动原前,其它部分不要变。
一般疑问句也好变,did放句子前,主语、动原、其它部分依次站立。
特殊疑问句也简单,疑问词加一般疑问句记心间。
一般过去时表示过去某个时间或某一段时间内发生的动作或存在的状态,常和过去的时间状语连用。