七年级关于数学的优秀教案范本

梦荧0分享

借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么数学这种难度较高的学科该怎么准备教案呢?以下是小编整理的一些七年级关于数学的优秀教案范本,欢迎阅读参考。

七年级关于数学的优秀教案范本

七年级关于数学的优秀教案范本(精选篇1)

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1.学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2.联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1.马路用什么几何图形代表?(直线)

2.文中相关地点用什么代表?(直线上的点)

3.学校大门起什么作用?(基准点、参照物)

4.你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1.0代表什么?

2.数的符号的实际意义是什么?

3.-75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的.意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1.什么样的直线叫数轴?它具备什么条件。

2.如何画数轴?

3.根据上述实例的经验,“原点”起什么作用?

4.你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1.判断下列图形是否是数轴。

2.口答:数轴上各点表示的数。

3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1.什么是数轴?

2.数轴的“三要素”各指什么?

3.数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1.下列命题正确的是()

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

五、板书

1.数轴的定义。

2.数轴的三要素(图)。

3.数轴的画法。

4.性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书P8页:

1.什么样的直线叫数轴?

定义:规定了_______、_______、_______的直线叫数轴。

数轴的三要素:_______、_______、_______。

2.画数轴的步骤是什么?

3.“原点”起什么作用?_______

4.你是怎么理解“选取适当的长度为单位长度”的?

练习:

1.画一条数轴

2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的_______边,与原点的距离是_______个单位长度;表示数-a的点在原点的_______边,与原点的距离是_______个单位长度.

练习:

1.数轴上表示-3的点在原点的_______侧,距原点的距离是_______;表示6的点在原点的_______侧,距原点的距离是_______;两点之间的距离为_______个单位长度。

2.距离原点距离为5个单位的点表示的数是_______。

3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是_______。

附:目标检测

1.下列命题正确的是( )

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

3.画数轴,观察数轴,在原点左边的点有_______个。

4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

七年级关于数学的优秀教案范本(精选篇2)

教学 建议

一、重点、难点分析

本节 教学 的重点是掌握三元一次方程组的解法, 教学 难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.

1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.

2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.

3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.

4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.

5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.

二、知识结构

三、教法建议

1. 解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.

2. 消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.

在例2中,如果先确定消去 ,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去 .这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.

教学 设计示例

一、素质 教育 目标

(一)知识 教学 点

1.知道什么是三元一次方程.

2.会解某个方程只有两元的简单的三元一次方程组.

3.掌握解三元一次方程组过程中化三元为二元或一元的思路.

(二)能力训练点

1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.

2.培养学生的计算能力、训练解题技巧.

(三)德育渗透点

渗透“消元”的思想,设法把未知数转化为已知.

(四)美育渗透点

通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.

二、学法引导

1. 教学 方法:观察法、讨论法、练习法.

2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.

三、重点?难点?疑点及解决办法

(一)重点

使学生会解简单的三元一次方程组,经过本课 教学 进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

(二)难点

针对方程组的特点,选择最好的解法.

(三)疑点

如何进行消元.

(四)解决办法

加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.

四、课时安排

一课时.

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1. 教师 先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.

2. 教师 由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元, 教师 讲解、小结.

3.由学生尝试,解决例题.

4.学生练习,教师 小结、讲评.

七、 教学 步骤

(一)明确目标

本节课将学习如何求三元一次方程组的解.

(二)整体感知

通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.

(三) 教学 过程

1.复习导入、探索新知

(1)解二元一次方程组的基本方法有哪几种?

(2)解二元一次方程组的基本思想是什么?

甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?

学生活动:回答问题、设未知数、列方程.

这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:

这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.

怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?

学生活动:思考、讨论后说出消元方案.

教师 对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得  ④,进一步将④分别代入①和③中,就可消去 ,得到只含 、 的'二元一次方程组.

解:由②,得     ④

把④代入①,得   ⑤

把④代入③,得    ⑥

⑤与⑥组成方程组

解这个方程组得

把 代入④,得

注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.

b.得 , 后,求 ,要代入前面最简单的方程④.

c.检验.

这道题也可以用加减法解,②中不含 ,那么可以考虑将①与③结合消去,与②组成二元一次方程组.

学生活动:在练习本上用加减法解方程组.

【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.

2.学生尝试解决例题

例1? 解方程组

学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.

解:②×3+③,得?   ④

①与④组成方程组

解这个方程组,得

把 , 代入②,得

归纳:这个方程组的特点是方程①不含 ,而②、③中 的系数绝对值成整数倍关系,显然用加减法从②、③中消去 后,再与①组成只含 、 的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.

【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.

3.尝试反馈,巩固知识

练习:P30 (1)

学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.

4.变式训练要,培养能力

补例:解方程组

学生活动:独立完成.

【教法说明】此方程组中方程①、③中 、 的系数完全相同,用③-①可直接得到 ,再把 代入②可求 ,代入①可求 .这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!

(四)总结、扩展

1.解三元一次方程组的基本思想是什么?方法有哪些?

2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.

3.注意检验.

【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点?某个方程只含两元,使学生在以后解题时有很强的针对性.

八、布置作业

(一)必做题:P31  A组1.

(二)选做题:解方程组

(三)思考题:课本第32页“想一想”.

【教法说明】作业

(一)是为了巩固本节所学知识;作业

(二)有很强的技巧性,可培养学生兴趣;作业

(三)培养学生分析问题、解决问题的能力.

七年级关于数学的优秀教案范本(精选篇3)

教学过程:

一、复习

1、一辆汽车行驶的速度不变,行驶的时间和路程。

2、一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

3、这节课,我们就应用比例的知识解决一些实际问题。

二、新授

1、教学例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2。8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的`吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

12。8/8=χ/10

8χ= 12。8×10

χ=128÷8

χ= 16答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19。2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

三、巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

四、总结

用比例知识解决问题的步骤是什么?

教学目标:

1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

3、培养学生良好的解答应用题的习惯。

教学重点:

用比例知识解答比较容易的归一、归总应用题。

教学难点:

正分析题中的比例关系,列出方程。

七年级关于数学的优秀教案范本(精选篇4)

教学目标:

1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

教学重难点:

重点:解一元一次方程的基本步骤和方法。

难点:含有分母的一元一次方程的解题方法。

教学过程:

一、新课导入:

请同学们和老师一起解方程:

并回答:解一元一次方程的一般步骤和最终的目的是什么?

二、讲授新课

请给同学们介绍纸草书(P95)。

问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

数是多少?

并引入让同学运用设未知数的方法,列出相应的方程。

并回答:这个方程和我们以前学习的.方程有什么不同?

同学们和老师一起完成解上述方程,并引入去分母。

例1、

例2、

活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

看一看你会不会错:

(1)解方程:

(2)解方程:

典型例题:解方程:

想一想:去分母时要注意什么问题?

(1)方程两边每一项都要乘以各分母的最小公倍数

(2)去分母后如分子中含有两项,应将该分子添上括号

选一选:

练一练:当m为何值时,整式和的值相等?

议一议:如何解方程:

注意区别:

1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

课堂小结:

(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

有没有疑问:不是最小公倍数行不行?

(2)去分母的依据是什么?

等式性质2

(3)去分母的注意点是什么?

1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

(4)解一元一次方程的一般步骤:

布置作业:P98,习题3.3第3题

补充作业:解方程:

(1)

(2)

板书设计:

教学反思:

七年级关于数学的优秀教案范本(精选篇5)

教学目标

知识与能力

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

教学思考

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

教学重点难点:

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

教学过程

创设情境,切入标题

同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的`实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

游戏与交流

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

随堂练习

指导学生完成教材第206页习题。

课时小结

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级关于数学的优秀教案范本(精选篇6)

一、教学目标:

⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

二、教学重点、难点:

余角与补角的性质

三、教学过程:

复习、引入:

⑴复习角的定义。你知道有哪些特殊的角?

⑵用量角器量一量图中每组两个角的度数,并求出它们的和。

你有什么发现?

新课:

由学生的发现,给出余角和补角的定义(文字叙述)。

并且用数学符号语言进行理解。

问题1:如何求一个角的.余角和补角。

①∠1的余角:90°-∠1

②∠α的补角:180°-∠α

练习:填表(求一个角的余角、补角)

拓广:观察表格,你发现α的余角和α的补角有什么关系?

如何进行理论推导?

结论:α的补角比α的余角大90°

α一定是锐角

钝角没有余角,但一定有补角。

七年级关于数学的优秀教案范本(精选篇7)

教学目标:

(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

教学重点:一元二次不等式的解法(图象法)

教学难点:

(1)一元二次方程、一元二次不等式与二次函数的关系;

(2)数形结合思想的渗透

教学方法与教学手段:

尝试探索教学法、归纳概括。

教学过程:

一、复习引入

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y < 0,即 2x-7 0;

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y<0,y>0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

二、讲解新课

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3<0(即y<0)的解集是

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y<0部分图象)

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,<0来确定的。

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x<- x="">2 }

四、课后作业:书P21/习题1.5/1.3.5.6

五、教学设计说明:

1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

七年级关于数学的优秀教案范本(精选篇8)

第一章 一元一次不等式组

1.1 一元一次不等式组

第1教案

教学目标

1. 能结合实例,了解一元一次不等式组的相关概念。

2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的'“转化”思想方法。

3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法

探索方法,合作交流。

教学过程

一、 引入课题:

1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2. 由许多问题受到多种条件的限制引入本章。

二、 探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、 抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)

    716482