最高考高二数学寒假作业
十年苦读一朝决胜负换来笑逐颜开,数载艰辛六月定乾坤赢得似锦前程。忘掉失败,不过要牢记失败中的教训。以下就是小编为大家整理的最高考高二数学寒假作业,一起来看看吧!希望能帮到大家。
最高考高二数学寒假作业
1.函数f(x)=x的奇偶性为()
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数
解析:选D.定义域为{x|x≥0},不关于原点对称.
2.下列函数为偶函数的是()
A.f(x)=|x|+xB.f(x)=x2+1x
C.f(x)=x2+xD.f(x)=|x|x2
解析:选D.只有D符合偶函数定义.
3.设f(x)是R上的任意函数,则下列叙述正确的是()
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
解析:选D.设F(x)=f(x)f(-x)
则F(-x)=F(x)为偶函数.
设G(x)=f(x)|f(-x)|,
则G(-x)=f(-x)|f(x)|.
∴G(x)与G(-x)关系不定.
设M(x)=f(x)-f(-x),
∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.
设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).
N(x)为偶函数.
4.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为-1,则2f(-6)+f(-3)的值为()
A.10B.-10
C.-15D.15
解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.
5.f(x)=x3+1x的图象关于()
A.原点对称B.y轴对称
C.y=x对称D.y=-x对称
解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.
数学寒假作业
一、选择题
1.对于集合A,B,“A⊆B”不成立的含义是( )
A.B是A的子集
B.A中的元素都不是B的元素
C.A中至少有一个元素不属于B
D.B中至少有一个元素不属于A
[答案] C
[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.
2.若集合M={x|x<6},a=35,则下列结论正确的是( )
A.{a}?M B.a?M
C.{a}∈M D.a∉M
[答案] A
[解析] ∵a=35<36=6,
即a<6,∴a∈{x|x<6},
∴a∈M,∴{a}?M.
[点拨] 描述法表示集合时,大括号内的代表元素和竖线后的制约条件中的代表形式与所运用的符号无关,如集合A={x|x>1}=B{y|y>1},但是集合M={x|y=x2+1,x∈R}和N={y|y=x2+1,x∈R}的意思就不一样了,前者和后者有本质的区别.
3.下列四个集合中,是空集的是( )
A.{0} B.{x|x>8,且x<5}
C.{x∈N|x2-1=0} D.{x|x>4}
[答案] B
[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.
4.设集合A={x|x=2k+1,k∈Z},B={x|x=2k-1,k∈Z},则集合A,B间的关系为( )
A.A=B B.A?B
C.B?A D.以上都不对
[答案] A
[解析] A、B中的元素显然都是奇数,A、B都是有所有等数构成的集合.故A=B.选A.
[探究] 若在此题的基础上演变为k∈N.又如何呢?答案选B你知道吗?
5.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且只有2个子集,则a的取值是( )
A.1 B.-1
C.0,1 D.-1,0,1
[答案] D
[解析] ∵集合A有且仅有2个子集,∴A仅有一个元素,即方程ax2+2x+a=0(a∈R)仅有一个根.
当a=0时,方程化为2x=0,
∴x=0,此时A={0},符合题意.
当a≠0时,Δ=22-4•a•a=0,即a2=1,∴a=±1.
此时A={-1},或A={1},符合题意.
∴a=0或a=±1.
6.设集合P={x|y=x2},集合Q={(x,y)}y=x2},则P,Q的关系是( )
A.P⊆Q B.P⊇Q
C.P=Q D.以上都不对
[答案] D
[解析] 因为集合P、Q代表元素不同,集合P为数集,集合Q为点集,故选D.
寒假数学作业例题
6.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.
解析:∵f(x)是[3-a,5]上的奇函数,
∴区间[3-a,5]关于原点对称,
∴3-a=-5,a=8.
答案:8
7.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()
A.是奇函数
B.是偶函数
C.既是奇函数又是偶函数
D.是非奇非偶函数
解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.
8.奇函数y=f(x)(x∈R)的图象点()
A.(a,f(-a))B.(-a,f(a))
C.(-a,-f(a))D.(a,f(1a))
解析:选C.∵f(x)是奇函数,
∴f(-a)=-f(a),
即自变量取-a时,函数值为-f(a),
故图象点(-a,-f(a)).
9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()
A.f(x)≤2B.f(x)≥2
C.f(x)≤-2D.f(x)∈R
解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.