数学初一上册课件范文

泳泳0分享

了解倒数概念,会求给定有理数的倒数,通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。这里给大家分享一些关于数学初一上册课件范文,方便大家学习。

数学初一上册课件范文篇1

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

数学初一上册课件范文篇2

教学目标:

知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

能力目标:培养学生快速运算的能力.

情感目标:培养学生耐心细致的学习习惯.

教学重点与难点:多项式除以单项式的法则是本节的重难点.

教学过程:

一、复习提问

1.计算并回答问题:

(1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

(3)以上的计算是什么运算?能否叙述这种运算法则?

2.计算并回答问题:

(1)3x(x2x+1);(2)4a(a2a+2)

3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

说明:希望学生能写出

2×3=6,(2的3倍是6)

3×2=6,(3的2倍是6)

6÷2=3,(6是2的3倍)

6÷3=2.(6是3的2倍)

然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

二、新课引入

对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

1.法则的推导.

引例:(8x312x2+4x)÷4x=(?)

分析:

利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x

然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

解:(8x312x2+4x)÷4x

=8x3÷4x12x2÷4x+4x÷4x

=2x23x+4x.

思考题:(8x312x2+4x)÷(4x)=?

数学初一上册课件范文篇3

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米 ①

冻土地段与非冻土地段相差100t—120(t-0.5)千米 ②

上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

数学初一上册课件范文篇4

教学目标

①过实例体验整式加减的意义

②掌握整式的简单加减运算

③会运用整式的加减解决简单的实际问题

教学重点

本节的教学重点是整式的加减运算。

教学难点

例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点

教学方法

讲练法

教学用具

教学过程

集体备课稿个案补充

一、新课引入

甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。

a1.5a

vb2b

b

甲乙

截面甲的面积是

截面乙的面积是

甲、乙的、两个截面面积的差是()—()=

本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。

二、讲授新课

例1求整式3x+4y与2x-2y-1的和

教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。

变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。

三、课堂练习(课本“做一做”)

1、填空:

(1)3x与-5y的和是,3x与-5y的差是;

(2)a-b,b-c,c-a三个多项式的和是。

2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。

四、典例分析

例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?

这个例题是本节课的难带内,教师可以设置下列问题:

1、分析题目的已知量与未知量,及相互间的关系;

2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?

3、填空:设小红家今年其他收入为a元,则

(1)今年农业收入为元;

(2)预计明年农业收入为元;

(3)预计明年其他收入为元;

(4)今年全年总收入为元;

(5)预计明年全年总收入为元。

4、增加还是减少?怎么判断?

教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。

五、教学反馈(课本“课内练习”)

1、计算:

(1)3/2x^2-(-1/2x^2)+(-2x^2);

(2)2(x-3x^2+1)-3(2x^2-x-2).

2、先化简,再求值:

(1)5x-[3x-x(2x-3)],其中x=1/2;

(2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。

3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。

六.探究活动

猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。

本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。

教师可作以下工作:1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。

七、小结、布置作业

数学初一上册课件范文篇5

1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.

进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

分析题目中的数量关系,用式子表示数量关系.

(设计者: )

一、创设情境 明确目标

青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.

(1)2 h行驶的路程是多少?3 h呢?t h呢?

(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

二、自主学习 指向目标

自学教材第54至55页,完成下列问题:

1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

(1)列车2 h行驶的路程为__200__km.

(2)列车3 h行驶的路程为__300__km.

(3)列车t h行驶的路程为__100t__km.

2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

三、合作探究 达成目标

用字母表示数

活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

(4)用式子表示数n的相反数.

【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.

【小组讨论】用字母表示数有什么意义?

【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.

【针对训练】见“学生用书”.

用字母表示简单的数量关系

活动二:阅读教科书例2中的四个问题,思考:

顺水行驶时,船的速度=________+________;

逆水行驶时,船的速度=________-________.

解答过程见教材第55页例2的解答过程.

【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.

【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.

注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

2.字母和数字相乘时,省略乘号,并把数字放到字母前;

3.出现除式时,用分数的形式表示;

4.结果含加减运算的,需要带单位时,式子要用“()”;

5.系数是带分数时,带分数要化成假分数.

【针对训练】见“学生用书”.

四、总结梳理 内化目标

1.用字母表示数的意义.

2.用含有字母的式子表示数量关系的意义.

3.用含有字母的式子表示数量关系时要注意的问题.

实际问题―→用字母表示数―→用字母表示数量关系

《2.1整式》同步练习含答案

1. 其中长方形的长为a,宽为b.

(1)阴影部分的面积是多少?

(2)你能判断它是单项式或多项式吗?它的次数是多少?

《2.1整式》课后练习含答案

知识要点

1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:

(1)不含加减运算;

(2)可以含乘、除、乘方运算,但分母中不能含有字母.

2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.

3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.

4.整式:单项和多项式统称整式.

数学初一上册课件范文篇6

学习目标:

理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。

学习重点:

多项式乘法法则及其应用。

学习难点:

理解运算法则及其探索过程。

一、课前训练:

(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

(3)3a2b2 ab3 = , (4) = ;

(5)- = ,(6) = 。

二、探索练习:

(1)如图1大长方形,其面积用四个小长方形面积

表示为: ;

(2)大长方形的长为 ,宽为 ,要

计算其面积就是 ,其中包含的

运算为 。

由上面的问题可发现:( )( )=

多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的 以另一个多项式的每一项,再把所得的积 。

三.运用法则规范解题。

四.巩固练习:

3.计算:① ,

4.计算:

五.提高拓展练习:

5.若 求m,n的值.

6.已知 的结果中不含 项和 项,求m,n的值.

7.计算(a+b+c)(c+d+e),你有什么发现?

六.晚间训练:

(7) 2a2(-a)4 + 2a45a2 (8)

3、(1)观察:4×6=24

14×16=224

24×26=624

34×36=1224

你发现其中的规律吗?你能用代数式表示这一规律吗?

(2)利用(1)中的规律计算124×126。

4、如图,AB= ,P是线段AB上一点,分别以AP,BP为边作正方形。

(1)设AP= ,求两个正方形的面积之和S;

(2)当AP分别 时,比较S的大小。

数学初一上册课件范文篇7

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

aman=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.

(n为正整数)

积的乘方等于各因式乘方的积.

=am-n(a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

a0=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

a-p=(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

也可表示为:(m≠0,n≠0,p为正整数)

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:

①系数一各项系数的最大公约数;

②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:

①提取公因式后各因式应该是最简形式,即分解到“底”;

②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

①平方差公式:a2-b2=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

    537962