人教版高一数学上册教案
作为一名无私奉献的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编帮大家整理的人教版高一数学上册教案,仅供参考,希望能够帮助到大家。
人教版高一数学上册教案1
一、教材的本质、地位与作用
对数函数(第二课时)是20__人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。
二、教学目标
根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:
学习目标:
1、复习巩固对数函数的图像及性质
2、运用对数函数的性质比较两个数的大小
能力目标:
1、培养学生运用图形解决问题的意识即数形结合能力
2、学生运用已学知识,已有经验解决新问题的能力
3、探索出方法,有条理阐述自己观点的能力
德育目标:
培养学生勤于思考、独立思考、合作交流等良好的个性品质
三、教材的重点及难点
对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小
教学中将在以下2个环节中突出教学重点:
1、利用学生预习后的心得交流,资源共享,互补不足
2、通过适当的练习,加强对解题方法的掌握及原理的理解
另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小
教学中会在以下3个方面突破教学难点:
1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
四、学生学情分析
长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。
学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。
五、教法特点
新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
六、教学过程分析
1、课件展示本节课学习目标
设计意图:明确任务,激发兴趣
2、温故知新(已填表形式复习对数函数的图像和性质)
设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。
3、预习后心得交流
1)同底对数比大小
2)既不同底数,也不同真数的对数比大小
以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固
设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。
4、合作探究——同真异底型的对数比大小
以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。
设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。
5、小结
以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法
6、思考题
以20__高考题为例,让学生学以致用,增强数学学习兴趣。
7、作业
包括两个方面:
1、书写作业
2、下节课前的预习作业
七、教学效果分析
通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。
人教版高一数学上册教案2
1、教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、
2、设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的`认识结构,从而达成教学目标、
3、教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、
6、教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、
8、教学设计(过程)
一、引入
问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?
问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?
问题3:当角clip_image002的终边在绕顶点O转动时,终边上的一个点P(_,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?
二、原有认知结构的改造和重构
问题4:当角clip_image002[1]是锐角时,clip_image004,线段OP的长度clip_image006这几个量之间有何关系?
学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数
学生阅读教材,并思考:
问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?
学生讨论并回答
三、新概念的形成
问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?
学生回答,并阅读教材,得到任意角三角函数的定义、并思考:
问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?
展示任意角三角函数的定义,并指出它是如何刻划圆周运动的
并类比函数的研究方法,得出任意角三角函数的定义域和值域。
四、概念的运用
1、基础练习
①口算clip_image008的值、
②分别求clip_image010的值
小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值
ⅱ)诱导公式(一)
③若clip_image012,试写出角clip_image002[2]的值。
④若clip_image015,不求值,试判断clip_image017的符号
⑤若clip_image019,则clip_image021为第象限的角、
例1、已知角clip_image002[3]的终边过点clip_image024,求clip_image026之值
若P点的坐标变为clip_image028,求clip_image030的值
小结:任意角三角函数的等价定义(终边定义法)
例2、一物体A从点clip_image032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clip_image034,试用clip_image034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clip_image006[1],如何用clip_image034[2]来表示物体A所在位置的坐标?
小结:可以采用三角函数模型来刻画圆周运动
五、拓展探究
问题8:当角clip_image002[4]的终边绕顶点O作圆周运动时,角clip_image002[5]的终边与单位圆的交点clip_image039的坐标clip_image041clip_image043与角clip_image002[6]之间还可以建立其它函数模型吗?
思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clip_image002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clip_image002[8]余弦值、正切值呢?
六、课堂小结
问题9:请你谈谈本节课的收获有哪些?
七、课后作业
教材P21第6、7、8题
人教版高一数学上册教案3
教学目标
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.
重点难点
教学重点:函数单调性的概念、判断及证明.
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.
教学方法
教师启发讲授,学生 探究学习.
教学手段
计算机、投影仪.
教学过程
创设情境,引入课题
课前布置任务:
(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.
(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.
下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.
图1
引导学生识图,捕捉信息,启发学生思考.
问题:观察图形,能得到什么信息?
预案:(1)当天的最高温度、最低温度以及何时达到;
(2)在某时刻的温度;
(3)某些时段温度升高,某些时段温度降低.
在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.
问题:还能举出生活中其他的数据变化情况吗?
预案:水位高低、燃油价格、股票价格等.
归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
【设计意图】由生活情境引入新课,激发兴趣.
归纳探索,形成概念
对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.
1.借助图象,直观感知
问题1:分别作出函数y=_+2,y=-_+2,y=_2,y=1_的图象,并且观察自变量变化时,函数值有什么变化规律?
图2
预案 :(1)函数y=_+2在整个定义域内y随_的增大而增大;函数y=-_+2在整个定义域内y随_的增大而减小.
(2 )函数y=_2在[0,+∞)上y随_的增大而增大,在(-∞,0)上y随_的增大而减小.
(3)函数y=1_在(0,+∞)上y随_的增大而减小,在(-∞,0)上y随_的增大而减小.
引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数?
预案:如果函数f(_)在某个区间上随自变量_的增大,y也越来越大,我们说函数f(_)在该区间上为增函数;如果函数f(_)在某个区间上随自变量_的增大,y越来越小,我们说函数f(_)在该区间上为减函数.
教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.
【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.
2.探究规律,理性认识
问题1:下图是函数y=_+2_(_>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
图3
学生的困难是难以确定分界点的确切位置.
通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.
问题2:如何从解析式的角度说明f(_)=_2在[0,+∞)为增函数?
预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(_)=_2在[0,+∞)为增函数.
(2)仿(1),取很多组验证均满足,所以f(_)=_2在[0,+∞)为增函数.
(3)任取_1,_2∈[0,+∞),且_1
所以f(_)=_2在[0,+∞)为增函数.
对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量_1,_2.
【设计意图】把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好了铺垫.
3.抽象思维,形成概念
问题:你能用准确的数学符号语言表述出增函数的定义吗?
师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.
(1)板书定义
(2)巩固概念
判断题:
①已知f(_)=1_,因为f(-1)
②若函数f(_)满足f(2)
③若函数f(_)在区间(1,2]和(2,3)上均为增函数,则函数f(_)在区间(1,3)上为增函数.
④因为函数f(_)=1_在区间(-∞,0)和(0,+∞)上都是减函数,所以f(_)=1_在(-∞,0)∪(0,+∞)上是减函数.
通过判断题,强调三点:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域 内的两个区间A,B上都是增(或减)函数,一般不能认为函数在A∪B上是增(或减)函数.
思考:如何说明一个函数在某个区间上不是单调函数?
【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
掌握证法,适当延展
【例】证明函数f(_)=_+2_在(2,+∞)上是增函数.
1.分析解决问题
针对学生可能出现的问题,组织学生讨论、交流.
证明:任取_1,_2∈(2,+∞),且_1
f(_1)-f(_2)=_1+2_1-_2+2_2求差
=(_1-_2)+2_1-2_2
=(_1-_2)+2(_2-_1)_1_2=(_1-_2)1-2_1_2=(_1-_2)_1_2-2_1_2,变形
∵2
∴_1-_2<0,_1_2>2,∴f(_1)-f(_2)<0,即f(_1)
∴函数f(_)=_+2_在(2,+∞)上是增函数.定论
2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.
练习:证明函数f(_)=_在[0,+∞)上是增函数.
问题:要证明函数f(_)在区间(a,b)上是增函数,除了用定义来证,如果可以证得对任意的_1,_2∈(a,b),且_1≠_2有f(_2)-f(_1)_2-_1>0可以吗?
引导学生分析这种叙述与定义的等价性,让学生尝试用这种等价形式证明函数f(_)=_在[0,+∞)上是增函数.
【设计意图】初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.
归纳小结,提高认识
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
1.小结
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法和思维方法:数形结合,等价转化,类比等.
2.作业
书面作业:课本习题1.3 A组第1,2,3题.
课后探究:
(1)证明:函数f(_)在区间(a,b)上是增函数当且仅当对任意的_,_+h∈(a,b),且h≠0有f(_+h)-f(_)h>0.
(2)研究函数y=_+1_(_>0)的单调性,并结合描点法画出函数的草图.
人教版高一数学上册教案4
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{_2,3_+2,5y3-_,_2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考
虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程_2=_的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合。
思考2:(课本P4的思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{_|_-3>2},{(_,y)|y=_2+1},{_|直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(_,y)|y= _2+3_+2}与 {y|y= _2+3x_2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x_整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程_2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(二).课堂练习:
1.课本P6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={_| ∈Z,_∈N},则它的元素是 。
4.已知集合A={_|-3
归纳小结:
本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。
作业布置:
1. 习题1.1,第3.4题;
2. 课后预习集合间的基本关系.
人教版高一数学上册教案5
经典例题
已知关于 的方程 的实数解在区间 ,求 的取值范围。
反思提炼:1.常见的四种指数方程的一般解法
(1)方程 的解法:
(2)方程 的解法:
(3)方程 的解法:
(4)方程 的解法:
2.常见的三种对数方程的一般解法
(1)方程 的解法:
(2)方程 的解法:
(3)方程 的解法:
3.方程与函数之间的转化。
4.通过数形结合解决方程有无根的问题。
课后作业:
1.对正整数n,设曲线 在_=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的公式是
[答案] 2n+1-2
[解析] ∵=_n(1-_),∴′=(_n)′(1-_)+(1-_)′_n=n_n-1(1-_)-_n.
f ′(2)=-n2n-1-2n=(-n-2)2n-1.
在点_=2处点的纵坐标为=-2n.
∴切线方程为+2n=(-n-2)2n-1(_-2).
令_=0得,=(n+1)2n,
∴an=(n+1)2n,
∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.
2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
解析:设 则 ,过点P作 的垂线
,所以,t在 上单调增,在 单调减,
人教版高一数学上册教案相关文章:
★ 一年级数学教案
★ 六年级数学教案