中考数学课件教案

金浪0分享

作为一名无私奉献的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编帮大家整理的中考数学课件教案,仅供参考,希望能够帮助到大家。

中考数学课件教案1

第2课时反比例函数的图象与性质(2)

教学目标

【知识与技能】

1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.

【过程与方法】

经历观察、分析、交流的过程,逐步提高运用知识的能力.

【情感态度】

提高学生的观察、分析能力和对图形的感知水平.

【教学重点】

会求反比例函数的解析式.

【教学难点】

反比例函数图象和性质的运用.

教学过程

一、情景导入,初步认知

1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?

【教学说明】复习上节课的内容,同时引入新课.

二、思考探究,获取新知

1.思考:已知反比例函数y=的图象经过点P(2,4)

(1)求k的值,并写出该函数的表达式;

(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;

(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?

分析:

(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.

(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.

(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.

【归纳结论】这种求解析式的方法叫做待定系数法求解析式.

2.下图是反比例函数y=的图象,根据图象,回答下列问题:

(1)k的取值范围是k>0还是k<0?说明理由;

(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:

(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.

(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.

【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.

中考数学课件教案2

1.2反比例函数的图象与性质

第1课时反比例函数的图象与性质(1)

教学目标

【知识与技能】

1.会用描点法画反比例函数图象;2.理解反比例函数的性质.

【过程与方法】

观察、比较、合作、交流、探索.

【情感态度】

通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.

【教学重点】

画反比例函数的图象,理解反比例函数的性质.

【教学难点】

理解反比例函数的性质,并能灵活应用.

教学过程

一、情景导入,初步认知

你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?

【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.

二、思考探究,获取新知

探究1:反比例函数图象的画法画出反比例函数y=的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.

(1)列表:取自变量x的哪些值?

x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

思考:

(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?

(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:

(1)函数图形的两个分支分别位于哪些象限?

(2)在每一象限内,函数值y随自变量x的变化是如何变化的?

【归纳结论】一般地,当k>0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.

探究3:反比例函数y=-的图象.可以引导学生采用多种方式进行自主探索活动:

(1)可以用画反比例函数y=-的图象的方式与步骤进行自主探索其图象;

(2)可以通过探索函数y=与y=-之间的关系,画出y=-的图象.

【归纳结论】一般地,当k<0时,反比例函数y=的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.

探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征?

【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.

【归纳结论】反比例函数y=(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与y=-(k≠0)的图象关于x轴或y轴对称.

【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.

中考数学课件教案3

(一)教材的地位和作用

《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

(二)教学目标

1、。知识与能力:

1) 进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:

1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

【教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】

一、知识梳理

1、判断两三角形相似有哪些方法?

1)定义: 2)定理(平行法):

3)判定定理一(边边边):

4)判定定理二(边角边):

5)判定定理三(角角):

2、相似三角形有什么性质?

对应角相等,对应边的比相等

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。

古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、例题讲解

例1(教材P49例3——测量金字塔高度问题)

《相似三角形的应用》教学设计 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50练习�0�2——测量河宽问题)

《相似三角形的应用》教学设计《相似三角形的应用》教学设计 分析:设河宽AB长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有 ,即 《相似三角形的应用》教学设计 .再解x的方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习

1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

五、回顾小结

一 )相似三角形的应用主要有如下两个方面

1 测高(不能直接使用皮尺或刻度尺量的)

2 测距(不能直接测量的两点间的距离)

二)测高的方法

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

三 )测距的方法

测量不能到达两点间的距离,常构造相似三角形求解

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、拓展提高

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业

课本习题27.2 10题、11题。

【教学设计说明】

相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。

中考数学课件教案4

教学内容

1.(a≥0)是一个非负数;

2.()2=a(a≥0).

教学目标

理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.

通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.

教学重难点关键新|课|标|第|一|网

1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.

2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时,叫什么?当a<0时,有意义吗?

老师点评(略).

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数.

做一做:根据算术平方根的意义填空:

()2=_______;()2=_______;()2=______;()2=_______;

()2=______;()2=_______;()2=_______.

老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.

同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以

()2=a(a≥0)

例1计算

1.()22.(3)23.()24.()2

分析:我们可以直接利用()2=a(a≥0)的结论解题.

解:()2=,(3)2=32�6�1()2=32�6�15=45,

()2=,()2=.

三、巩固练习

计算下列各式的值:X|k|b|1.c|o|m

()2()2()2()2(4)2

四、应用拓展

例2计算

1.()2(x≥0)2.()23.()2

4.()2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2�6�12x�6�13+32=(2x-3)2≥0.

所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

()2=x+1

(2)∵a2≥0,∴()2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1

(4)∵4x2-12x+9=(2x)2-2�6�12x�6�13+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴()2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3(2)x4-4(3)2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1.(a≥0)是一个非负数;

2.()2=a(a≥0);反之:a=()2(a≥0).

六、布置作业

1.教材P8复习巩固2.(1)、(2)P97.

2.选用课时作业设计.

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.下列各式中、、、、、,二次根式的个数是().

A.4B.3C.2D.1

2.数a没有算术平方根,则a的取值范围是().

A.a>0B.a≥0C.a<0D.a=0

二、填空题

1.(-)2=________.

2.已知有意义,那么是一个_______数.

三、综合提高题

1.计算

(1)()2(2)-()2(3)()2(4)(-3)2

(5)

2.把下列非负数写成一个数的平方的形式:

(1)5(2)3.4(3)(4)x(x≥0)

3.已知+=0,求xy的值.

4.在实数范围内分解下列因式:

(1)x2-2(2)x4-93x2-5

第二课时作业设计答案:

一、1.B2.C

二、1.32.非负数

三、1.(1)()2=9(2)-()2=-3(3)()2=×6=

(4)(-3)2=9×=6(5)-6

2.(1)5=()2(2)3.4=()2

(3)=()2(4)x=()2(x≥0)

3.xy=34=81

4.(1)x2-2=(x+)(x-)

(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-)

(3)略

中考数学课件教案5

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).

(3)掌握�6�1=(a≥0,b≥0),=�6�1;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1二次根式3课时

21.2二次根式的乘法3课时

21.3二次根式的加减3课时

教学活动、习题课、小结2课时

21.1二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用(a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如(a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“(a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).

问题2:由勾股定理得AB=

问题3:由方差的概念得S=.

二、探索新知

很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0,有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.当x是多少时,在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.

解:由3x-1≥0,得:x≥

当x≥时,在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时,+在实数范围内有意义?

分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥-且x≠-1时,+在实数范围内有意义.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一个正方形的面积是5,那么它的边长是()

A.5B.C.D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时,+x2在实数范围内有意义?

3.若+有意义,则=_______.

4.使式子有意义的未知数x有()个.

A.0B.1C.2D.无数

5.已知a、b为实数,且+2=b+4,求a、b的值.

第一课时作业设计答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x=.

2.依题意得:,

∴当x>-且x≠0时,+x2在实数范围内没有意义.

3.

4.B

5.a=5,b=-4


中考数学课件教案相关文章:

最新数学初一讲课教案例文

初中数学中学教学计划2021

九年级下册数学科教学工作总结5篇

最新七年级下册数学免费教案文案

初三数学教学工作总结最新5篇

人教版数学初二下册教学总结5篇

教师考核学期工作总结5篇

初中数学教师教学反思5篇

初中数学演讲稿范文

初中部数学教学计划2021

    495480