初二下学期数学教案范文
经验丰富的老师要想精益求精,也必须好好设计上课的思路、设计问题、设计过程,顺手把这些记录下来,写成教案,其实也不是很烦琐,写的过程其实也是一个整理思路的过程。今天小编在这里整理了一些2021初二下学期数学教案范文,我们一起来看看吧!
2021初二下学期数学教案范文1
一、 教学目标
1. 了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
3.认知难点与突破方法
难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.
三、例、习题的意图分析
本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.
1.本节进一步提出P4[思考]让学生自己依次填出: , , , .为下面的[观察]提供具体的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.
希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .
2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.
3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.
四、课堂引入
1.让学生填写P4[思考],学生自己依次填出: , , , .
2.学生看P3的问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用实践,与以航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .
3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?
五、例题讲解
P5例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1
六、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的值为0?
(1) (2) (3)
七、课后练习
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
八、答案:
六、1.整式:9x+4, , 分式: , ,
2.(1)x≠-2 (2)x≠ (3)x≠±2
3.(1)x=-7 (2)x=0 (3)x=-1
七、1.18x, ,a+b, , ; 整式:8x, a+b, ;
分式: ,
2. X = 3. x=-1
2021初二下学期数学教案范文2
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点: 理解分式的基本性质.
2.难点: 灵活应用分式的基本性质将分式变形.
3.认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.
三、例、习题的意图分析
1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?
2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
P11例3.约分:
[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
P11例4.通分:
[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.
, , , , 。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.
解: = , = , = , = , = 。
六、随堂练习
1.填空:
(1) = (2) =
(3) = (4) =
2.约分:
(1) (2) (3) (4)
3.通分:
(1) 和 (2) 和
(3) 和 (4) 和
4.不改变分式的值,使下列分式的分子和分母都不含“-”号.
(1) (2) (3) (4)
七、课后练习
1.判断下列约分是否正确:
(1) = (2) =
(3) =0
2.通分:
(1) 和 (2) 和
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.
(1) (2)
八、答案:
六、1.(1)2x (2) 4b (3) bn+n (4)x+y
2.(1) (2) (3) (4)-2(x-y)2
3.通分:
(1) = , =
(2) = , =
(3) = =
(4) = =
4.(1) (2) (3) (4)
2021初二下学期数学教案范文3
一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.
二、重点、难点
1.重点:会用分式乘除的法则进行运算.
2.难点:灵活运用分式乘除的法则进行运算 .
3. 难点与突破方法
分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.
三、例、习题的意图分析
1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是 ,大拖拉机的工作效率是小拖拉机的工作效率的 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.
2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.
3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.
4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1四、课堂引入
1.出示P13本节的引入的问题1求容积的高 ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的 倍.
[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.
1. P14[观察] 从上面的算式可以看到分式的乘除法法则.
3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?
类似分数的乘除法法则得到分式的乘除法法则的结论.
五、例题讲解
P14例1.
[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.
P15例2.
[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.
P15例.
[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是 、 ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1六、随堂练习
计算
(1) (2) (3)
(4)-8xy (5) (6)
七、课后练习
计算
(1) (2) (3)
(4) (5) (6)
八、答案:
六、(1)ab (2) (3) (4)-20x2 (5)
(6)
七、(1) (2) (3) (4)
(5) (6)
2021初二下学期数学教案范文4
一、教学目标:熟练地进行分式乘除法的混合运算.
二、重点、难点
1.重点:熟练地进行分式乘除法的混合运算.
2.难点:熟练地进行分式乘除法的混合运算.
3.认知难点与突破方法:
紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.
三、例、习题的意图分析
1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.
教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.
2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.
四、课堂引入
计算
(1) (2)
五、例题讲解
(P17)例4.计算
[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.
(补充)例.计算
(1)
= (先把除法统一成乘法运算)
= (判断运算的符号)
= (约分到最简分式)
(2)
= (先把除法统一成乘法运算)
= (分子、分母中的多项式分解因式)
=
=
六、随堂练习
计算
(1) (2)
(3) (4)
七、课后练习
计算
(1) (2)
(3) (4)
八、答案:
六.(1) (2) (3) (4)-y
七. (1) (2) (3) (4)
2021初二下学期数学教案范文5
一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.
二、重点、难点
1.重点:熟练地进行分式乘方的运算.
2.难点:熟练地进行分式乘、除、乘方的混合运算.
3.认知难点与突破方法
讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 = = = , = = = ,……
顺其自然地推导可得:
= = = ,即 = . (n为正整数)
归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.
三、例、习题的意图分析
1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判
断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..
2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.
分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.
四、课堂引入
计算下列各题:
(1) = =( ) (2) = =( )
(3) = =( )
[提问]由以上计算的结果你能推出 (n为正整数)的结果吗?
五、例题讲解
(P17)例5.计算
[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.
六、随堂练习
1.判断下列各式是否成立,并改正.
(1) = (2) =
(3) = (4) =
2.计算
(1) (2) (3)
(4) 5)
(6)
七、课后练习
计算
(1) (2)
(3) (4)
八、答案:
六、1. (1)不成立, = (2)不成立, =
(3)不成立, = (4)不成立, =
2. (1) (2) (3) (4)
(5) (6)
七、(1) (2) (3) (4)