一年级数学准备课教案例文
每门课程都有明确的教学目的,而教学目的是通过每次课的教学任务的完成来实现的。要完成每次课的教学任务,必须以教学计划或教学大纲为准绳、以教科书为依据,明确每次课的重点、难点,以期教学时有据可依,得心应手。今天小编在这里整理了一些一年级数学准备课教案2021例文,我们一起来看看吧!
一年级数学准备课教案2021例文1
教学要求
①使学生理解公约数、最大公约数、互质数的概念。
②使学生初步掌握求两个数最大公约数的一般方法。
③培养学生抽象、概括的能力和动手实际操作的能力。
教学重点 理解公约数、最大公约数、互质数的概念。
教学难点 理解并掌握求两个数的最大公约数的一般方法。
教学用具 投影仪等。
教学过程
一、创设情境
填空:①12÷3=4,所以12能被4( )。4能( )12,12是3的( ),3是12的( )。②把18和30分解质因数是 ,它们公有的质因数是( )。③10的约数有( )。
二、揭示课题
我们已经学会求一个数的约数,现在来看两个数的约数。
三、探索研究
1.小组合作学习
(1)找出8、12的约数来。
(2)观察并回答。
①有无相同的约数?各是几?
②1、2、4是8和12的什么?
③其中最大的一个是几?知道叫什么吗?
(3)归纳并板书
①8和12公有的约数是:1、2、4,其中最大的一个是4。
②还可以用下图来表示。
8 1 3
2 4 6 12
8 和12 的公约数
(4)抽象、概括。
①你能说说什么是公约数、最大公约数吗?
②指导学生看教材第66页里有关公约数、最大公约数的概念。
(5)尝试练习。
做教材第67页上面的“做一做”的第1题。
2.学习互质数的概念
(1)找出下列各组数的公约数来:5和7 8和9 12和25 1和9
(2)这几组数的公约数有什么特点?
(3)这几组数中的两个数叫做什么?(看书67页)
(4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)
3.学习例2
(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。
(2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5
(3)观察、分析。
①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?
②18和30的公约数就必须包含18和30公有的什么?
③18和30公有的质因数有哪些?
④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))
⑤最大公约数6是怎样得出来的?
(4)归纳板书。
18和30的最大公约数6是这两个数全部公有质因数的乘积。
(5)求最大公约数的一般书写格式。
为了简便,我们把两个短除式合并成一个如: 18 30
让学生分组讨论合并后该怎样做?
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最大公约数?
④为什么不把商也连乘进去?
(6)尝试练习。
做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。
(7)抽象概括求最大公约数的方法。
①谁能说说求最大公约数的方法。
②引导学生看教材第68页求两个数的最大公约数的方法。
四、课堂实践
做练习十四的1、2、3题。
五、课堂小结
学生总结今天学习的内容。
六、课堂作业
1.做练习十四的第4题。
2.做练习十四的12-题。
课后反思:教学"求最大公约数",课本共安排了三个例题及一个"做一做",教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:"两个数的最大公约数也就是这两个数的差。"教师问:"有什么根据?"学生回答说:"按照课本的三个例题:12和18的最大公约数是6;90和72的最大公约数是18;24、36和48的最大公约数是12;做一做40,60和80的最大公约数是20。"还真是呀!学生们很惊讶,教师了解到学生错误结论的由来,但不急于指出学生的错误,首先肯定了学生善于观察和思考的精神,接着又向学生指出:"是巧合呢,还是真有这样的规律存在呢?"学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲。过了一会,小B第一个发现象36和28,90和68的最大公约数就不是它们的差。教师又及时把这一信息交给学生,学生的研究热情被激发起来,课堂气氛异常活跃。下课了,大家的讨论还在继续着,并且乐此不疲。他们为了探求"规律",愉快地做了几十道求最大公约数的练习,牢固地掌握了知识。在教师创设的途径中,学生品尝到成功的喜悦,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。
一年级数学准备课教案2021例文2
教学课题:
简单分数的加、减法
教学目标:
1、帮助学生进一步感受分数的实际意义;
2、为学生提供独立思考、自主探索的机会,锻炼运用数学知识解决实际问题的能力。
教学重点:
能进行简单的分数相加、相减。
教学准备:
卡片
教学过程:
一、复习
1、请大家拿出同样大小的长方形纸,把它平均分成8份,想一想:每一份都是这张长方形纸的几分只几?
2、再把它的3份涂上红色,再想一想:涂红色的部分是这张长方形纸的几分之几?
3、再把它的2份涂上绿色,也请大家想一想:涂绿色的部分是这张长方形纸的几分之几?
二、学习新知
1、根据刚才前后两次所涂的颜色,你能想到怎样的数学问题?先在小组里说一说,再在班级里组织交流。
2、学生可能会提到:两次涂色部分一共是这个长方形纸的几分之几?学生也有可能会提出:红色部分比绿色部分多的是这个长方形的几分之几?
3、学生以小组为单位讨论这两个数学问题。师作巡视。
4、组织交流:要求两次涂色部分一共是这个长方形的几分之几?可以怎样列算式?如何算?要求红色部分比绿色部分多的是这个长方形的几分之几?又应该怎样列算式?如何算?
5、老师根据学生的回答,在黑板上相应板书。
三、巩固练习
1、完成想想做做的第1题。第1次大约喝了这杯水的五分之一,第二次大约喝了这杯水的五分之二。两次大约喝了这杯水的几分之几?学生先独立完成,再组织交流。
2.完成书上想想做做的第3题。小红用一张纸的八分之五做红花,小明用同样大小的一张纸的八分之二做小旗。
(1)两人一共用去这张纸的几分之几?
(2)小明比小红少用的是这张纸的几分之几?学生先独立完成在书上,再组织全班交流。
3.完成书上想想做做的第4题。一块地的五分之三种西红柿,五分之一种茄子,根据这两个条件,请同学提一些数学问题。学生可能会提:西红柿和茄子一共种了这块地的几分之几?西红柿比茄子多种了这块地的几分之几?(或茄子比西红柿少种了这块地的几分之几?)学生先自己解答提出的问题,再组织交流。
4.学习思考题。先请学生同桌相互说一说,再填一填。然后组织交流。
四、课堂小结
同学们,今天这节课我们一起学习了什么内容?你有什么收获?
五、布置作业
完成想想做做的第2、3题。
一年级数学准备课教案2021例文3
教学内容:
教科书第3页的例3、例4,第3页做一做,练习一第10~13题
教学目的:
使学生掌握确定积的小数位时,位数不够会用0补足;
使学生初步掌握“当乘数比1小时,积比被乘数小,当乘数比1大时,积比被乘数大”;培养学生的观察比较的能力。
教学重点、难点:
在积中点小数点时,位数不够如何用“0”补充
教学过程:
一、复习引入
1、7×0.84.2×0.31.3×0.5
口算并说说怎样想的?
2、指名说说小数乘法的计算法则
3、把下面各数缩小1000倍
12.5256103
二、进行新课
1、教学例30.056×0.15
(1)启发提问:①怎样列竖式?要不要小数点对齐?为什么?
②怎样把0.056×0.15转化成整数乘法?
③按整数乘法乘出来的积,比原题的结果扩大了多少倍?
④要得到原来的积,该怎么办?
⑤积的小数位数不够时,怎么办?
(2)强调:计算小数乘法在点小数点时,乘得的积的小数位数不够就要在小数的前面补零。
注意:先点小数点,再去掉小数末尾的零
(3)验算:交换因数位置后让学生说说0.056×0.15、
0.15×0.056各求的是什么?然后进行检验。
(4)练一练
1.3×0.050.025×1.8
2、教学例4
(1)指名读题
(2)列出算式:这题该用什么方法计算?
(3)说说18.5×2.4表示什么意义?
(4)指出:以前表示两个数的位数关系的都是整数,现在倍数关系也可以是比1大的小数,就象这里,18.5的2.4倍就是求18.5的2倍和18.5的十分之四合起来是多少?
求18.5的2倍用乘法,求18.5的.十分之四用乘法,因而求
18.5的2.4倍也用乘法。
(5)算出得数(学生自练后填在书上)
集体订正
3、观察例3,例4,比较积和被乘数的大小
(1)小组讨论并填表:当积小于被乘数时,乘数有了什么特点?(与1比较是怎样的关系)
当积大于被乘数时,乘数有了什么特点?
为什么有这种规律?
(2)做一做
先判断一下,积比被乘数大还是小,再计算
指名板演,其余自练
集体订正,说说怎样算的
三、巩固练习
1、P5第10题小组形式,小组长报题,组员抢答
汇报情况,共同纠正易错题,择题说说口算步骤
2、判断下列各题是否正确,为什么?
0.2812.2
×0.5×0.5
───────────
0.014061.0
3、P5第12题做在书上后集体订正,指名说出每道题对错的理由
4、P5第13题自练后评讲
四、全课
今天学习的小数乘法,在点小数点时碰到了什么问题?怎么解决的?乘数比1小时,积比被乘数大还是小?反过来呢?
五、布置作业
P5第11题
六、板书
一个数乘以小数
例3注意点
计算过程表格
例4
计算过程
一年级数学准备课教案2021例文4
教学内容:教科书第5354页上面的内容,练习十二的第16题。
教学目的:
1.使学生在已学过的减法知识的基础上,概括出减法的意义,减法的认识从感性上升到理性。
2.使学生理解并掌握加减法之间的关系。
教学重点:减法的意义
教学难点:加减法之间的关系
教具准备:小黑板
教学过程:
一、教学减法的意义
1.减法的意义
教师:我们在前三年已经学过减法的计算方法,现在来学习一些有关减法的规律性知识,首先学会减法的意义。
教师出示第53页上面的题:
(1)一班有男生24人,女生有19人。24+19=43(人)
全班共有多少人? 加数 + 加数 = 和
(2)一班有43人,其中男生24人,43 + 24 = 19(人)
女生有多少人? 和 - 加数 = 加数
(3)一班有43人,其中女生19人。43 -19 = 2 4(人)
男生有多少人? 和 - 加数 = 加数
先做第(1)题,让学生自己分析数量关系,进行解答,然后提问:
这道题为什么用加法计算?
谁能说出加法算式中各部分的名称?
学生回答后,教师在第(1)题的右边板书出加法算式,并在算式下面写出加数、加数、和(如右上)。
接着学生解答第(2)、(3)题,然后回答:
与第(1)题比较,第(2)、(3)题是已知什么,求什么?
用什么方法计算?
引导学生说出第(1)题是已知男生和女生人数,求全班人数用加法,第(2)、(3)题是已知全班学生人数和男生或女生人数,反过来求女生或男生人数,都用减法计算。教师板书出第(2)、(3)题的减法算式(如右上)。
然后教师提问:
如果撇开题里讲的具体的事,每道题各是已知什么,求什么?
启发学生说出:第(1)题是已知两个加数,求它们的和,用加法;第(2)、(3)题都是已知和与其中一个加数,求另一个加数,用减法。
学生回答后,教师在第(2)、(3)题的算式下面注出和、加数、加数(如右上。)然后启发学生想:
根据第(2)、(3)题的算式与第(1)题的算式的联系,你能说一说减法是什么样的运算吗?
学生回答后,教师进行总结:减法是已知两个数的和与其中的一个加数,求另一个加数的运算。
让学生看书上第54页,读一读书的结语。然后提问:
在减去的已知数叫做什么?(被减数。)
要减去的已知加数叫做什么?(减数。)
要求的末知加数叫做什么?(差。)
教师说明:在减法,已知的和叫做被减数,减去的已知加数叫做减数,求出的未知加数叫做差。减法是加法的逆运算。逆就是相反的意思,逆运算就是相反的运算。我们可以通过上面的例子来理解。第(1)题用加法计算,第(2)、(3)题都用减法计算,第(2)、(3)题与第(1)题比较,第(1)题的问题在第(2)、(3)题中变成了已知条件,第(1)题中的其中一个已知条件在第(2)、(3)题中变成问题。也就是说,减法中的已知条件和问题与加法中的已知条件和问题正好相反,在加法中已知的,在减法中变成了未知的,在加法中未知的,在减法中变成了已知的。所以减法是与加法相反的运算,通常叫做逆运算。
2.练习
(1)做第54页上的做一做。
要让学生根据减法的意义说明各题的得数是怎么得来的。发现问题及时纠正。
(2)做练习十二的第1题。
要让学生应用减法的意义说明各题为什么用减法计算。在语言的叙述上,尽量紧扣减法的意义,逐步培养学生运用概念说理的能力。如第(1)题,可以启发学生说出:因为已知小明和小绅的邮票张数的和,又知道小明的邮票张数,要求小强的邮票张数,就是已知和(小明和小强的邮票张数的和)与一个加数(小明的邮票张数),求另一个加数(小绅的邮票张数),所以用减法法算。
二、教学0在减法中的特性
提问:
在加法中关于0的运算有几种情况?(两种)
谁能举例说明?(7+0=7,0+0=0。)
根据减法是加法的逆运算,那么减法中关于0的运算有哪几种情况?
引导学生写出下面三种情况:
70=7,77=0,00=0
然后引导学生归纳:
我们先来看第一种情况:70=7,那么80等于几?90呢?任意一个数减去0得多少?用一句话说就是。
再来看第二、三种情况:77=0,00=0,任意一个数减去它自己等于多少?也就是当被减数时,差怎样?
最后,概括成两条:
1.一个减法去0,还得原数;
2.被减数等于减数、差是0。
三、教学加、减法各部分间的关系
2. 加法各部分间的关系。
提问:
我们已经学过加、减法各部分间的关系,你们还记得吗?
谁能说出加法各部分间的最基本的关系是什么?
知道和与其中一个加数,如何求另一个加数?
随着学生的回答,教师板书出加法各部分间的关系:
2.减法各部分间的关系。
提问:
减法中各部分间的最基本关系是什么?
知道被减数和减数,怎样求差?
知道被减数和差,怎样求减数??
知道减数和差,怎样求被减数??
学生边回答教师边进行归纳,整理出下面的关系式:
3.完成练习十二的第2、3题。
这两道题,既可以根据减法各部分间的关系说明,也可以用减法的意义说明。例如,第2题,根据2100690=1405写出一道加法算式和一道减法算式。既可以把2100、695、1405分别看作被减数、减数、差,运用减法各部分间的关系来做,又可以把它们分别看作和、加数、加数,运用减法的意义来完成。
4.加、减法各部分间关系的应用。
教师:我们学过了这些关系,可以对加、减法的计算进行验算。
(1)加法的验算。
教师板书:1 2 3 4 验算:2 0 7 9 2 0 7 9
+ 8 4 5 8 4 5 1 2 3 4
2 0 7 9 1 2 3 4 8 4 5
让学生用以前学过的验算方法进行验算,并回答用加法验算加法的方法的方法应用的是什么运算定律(加法交换律)。然后提问:
还可以怎样验算?(用减法验算加法。)让学生板演(如上右)。
应用的是什么知识?(加法中各部分间的关系:和 一个加数 = 另一个加数。)
向学生说明:因为加数有两个(845,1234),验算时用和(20--)减去哪一个加数都可以,因而用减法验算加法可以任选一个加数作减数来进行验算。
(2)减法的验算。
教师板书:1 2 3 4 验算: 2 4 7 1 2 3 4
9 8 7 + 9 8 72 4 7
2 4 7 1 2 3 4 9 8 7
让学生计算,并用学过的知识进行验算。教师板书出验算的竖式(如上右),让学生说一说每种验算方法应用了什么知识。
然后教师指出:验算减法,可以用减法中各部分间的关系。用算出的差和减数相加,看是不是等于被减数;或者从被减数里减去算出的差,看是不是等于减数,都可以用来验算减法。
四、巩固练习
完成练习十二的第56题。
1.第5题,笔算时要求计算正确,并注意迅速;用珠算验算时,要提醒学生注意定好个位,验算的方法有些题可以由教师适当指定一种,其它的题由学生自己任意选用。
2.第6题,先让学生明确表中的a+b表示两个数的和。学生填完后,先说一说是怎样想的,然后让还生观察:每组数同第一组比较,哪个数变化了?加数变化后,和是怎么变化的?
一年级数学准备课教案2021例文5
教学目标:
(1) 知识与技能:能运用商不变的规律口算有关除法。
(2) 过程与方法:让学生经历探索的过程,学会并用类比迁移的方法探索新知,通过观察、分析、交流、合作总结被除数和除数同时发生变化,商不变的规律。培养学生观察、比较、猜想、概括以及发现规律、探索新知的能力。
(3) 情感、态度与价值观:引导学生经历探索过程,体验数学知识的探索性,体验发现乐趣,增强成功体验。
教学重点:
(1) 引导学生自己发现规律,掌握规律;
(2) 通用简单的语言表述规律;
(3) 利用商不变的规律进行简便计算。
教学难点:
(1) 引探讨发现规律的过程;
(2) 用语言正确表述变化的规律。
学生情况:
兴趣是的老师。而且课标明确指出:“数学学习活动必须建立在学生认知发展水平和已有的知识经验基础之上。”四年级的小学生具有好动、好奇的心理特点,喜欢探究新的知识内容。学生之前已分别掌握了被除数不变,商随除数的变化而变化的情况和除数不变,商随被除数的变化而发生变化的情况。有了这些认识基础,再利用知识的迁移,他们一定能经过探索,发现并总结规律。
教学方法:
根据本课教学内容的特点和学生的思维特点,我选择了引导发现法为主,辅以谈话法、小组合作等方法的优化组合。充分调动学生各种感官参与学习,发挥学生的主观作用与老师的点拨作用,体现“学生是课堂的主体、教师是课堂的主导”,利用引人入胜的问题情境,生动有趣的故事激发学生学习的兴趣,调动学生学习的积极性,引导他们去发现规律、分析规律、解决实际问题、获取知识,从而达到训练思维、培养能力的目的。
教学过程:
一、创设情境,提出问题
利用生动有趣的故事导入新课。四年级的学生一般都喜欢听故事,用故事导入新课,能快速吸引学生的注意力到课堂中来。
(1) 找两名学生学生,一个扮演孙悟空,一个扮演猪八戒:14块饼平均分,2天分完;140块饼平均分,20天分完。
(2) 教师提问:真的像猪八戒想的那样,每天我可以多吃些了吗?通过这节课的学习,你就知道啦。
板书课题:商不变的规律
二、合作探究,发现规律
(1) 提出问题:大屏幕出示如下的算式。要同学们先计算出商,再从上到下观察这些式子,注意分别用第2、3、4、5式与第1个算式进行比较,你发现了什么?5分钟时间,小组交流讨论。讨论出结果后,用行动告诉老师。
(2) 小组讨论。小组成员激烈讨论,老师鼓励学生各抒已见,学生之间相互补充,用自己的语言总结发现规律。
(3) 汇报交流。等班里大部分同学都安静坐好后,教师先找两位同学说出他们分别计算出的上面式子的商,然后找位于班级不同小组、不同层次的学生分别表述他们组发现的规律。
把几个算式放在一起进行对比。
经过对比,学生们会很容易地发现规律。先找班里左边的小组表述规律,他们会说“被除数乘一个数,除数也乘一个数,商不变”。这时,老师要教师适时加以评论表扬,说“你们组发现了被除数和除数乘一个数,商不变。有了这么棒的发现,真不错。”再找其他组进行补充,教师适时加以引导。全班有21个讨论小组,教师找10个组不断地进行加工补充。10个组占了全班将近50%的学生,经过这么多同学的补充和教师的引导,同学们最终会完整地说出这样的规律:被除数和除数同时乘相同的数,商不变。
(4) 教师质疑:还有其他问题吗?引出条件:0 除外。为什么是 0 除外呢?生:因为 0 乘任何数都得 0 。老师引导学生:你们觉得在这个规律中,哪几个词比较关键?学生会发现:同时、相同、0 除外。为什么说是“同时”、“相同”?可以举例子来证明,从而得出规律:被除数和除数同时乘相同的数(0 除外),商不变。引导学生用数学式子的方式把这个规律表达出来。
教师板书
(5) 引导学生利用刚刚发现并总结规律和过程,再从下到上观察这些式子,注意分别用第2、3、4、5式与第1个算式进行比较,你发现了什么?
有了刚刚总结规律的方法,相信同学们能很快发现并说出结论:被除数和除数同时除以相同的数(0 除外),商不变。
教师在刚刚板书的位置下面一行板书
(6) 教师总结:这就是商不变的规律。全班学生齐读并背诵这两条规律。
(7) 学生们发现了这两条规律,再回看课堂导入过程中分饼的故事,让学生们明白在刚才的故事中,孙悟空正是利用商不变的规律教育了贪婪的猪八戒。
三、巩固练习,扩展应用
题目的设计都是商不变的规律的灵活运用,使学生能进一步加深理解并学以致用。
1.我来问,我来答
(1)被除数乘 2,除数怎样变化,商不变?
(2)除数除以 10,被除数怎样变化,商不变?
2.判断对错。
(1)被除数和除数同时乘 5 ,商就应乘 25 。 ( )
(2)两数相除的商是 6,如果被除数和除数同时除以 3,商还是 6。( )
(3)已知14 ÷ 2 = 7,则(14×5)÷(2×3)= 7。 ( )
3.从上到下,根据第一行的商,写出下面两题的商。
4.在○中填上运算符号,在□中填上数。
直接由第 1 个式子到第 4 个式子,学生接受起来会比较困难,所以用第 2 个式子和第 3 个式子作为过渡,这样学生就可以很容易地理解并得知第 4 个式子该如何填写了。
4. 自主评价,促进反思
和大家分享一下,本节课你的收获吧!只要学生说出和本节课有关的学习内
容,教师都适时加以表扬鼓励。让同学们自己反思学到的知识,既注重了学法、情感等方面的总结,又让学生体会到数学来源于生活,又应用于生活的道理。
五、说练习的内容
课堂作业:课本 P95 5
板书设计:
商不变的规律