人教版初中数学实用知识点
数学作为研究现实世界中的数量关系和空间形式的科学,是剔除了物质的其它具体特性,仅仅从数与形的角度来研究整个世界的。下面是小编为大家整理的关于人教版初中数学实用知识点,希望对您有所帮助!
不等式与不等式组知识点
一、不等式
不等式及其解集
1、不等式:用不等号表示大小关系的式子。
2、不等式的解:使不等式成立的未知数的值,叫不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
不等式的性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性)。
性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。如果a>b,那么a+c>b+c(不等式的可加性).
性质3:不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式的两边同乘(除以)同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性质4:如果a>b,c>d,那么a+c>b+d(不等式的加法法则)。
性质5:如果a>b>0,c>d>0,那么ac>bd(可乘性)。
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0
二、一元一次不等式
1、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
2、不等式的解法:
步骤:去分母,去括号,移项,合并同类项,系数化为一;
注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。
三、一元一次不等式组
1、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
3、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
解一元一次不等式组的一般方法:
以两条不等式组成的不等式组为例:
①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”。
②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”。
③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”。< p="">
④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”不等式组的解集的确定方法(a>b)。
二元一次方程组知识点
一、二元一次方程组
1、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
二、消元——解二元一次方程组
二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法。
1、代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
三、实际问题与二元一次方程组
实际应用:审题→设未知数→列方程组→解方程组→检验→作答。
关键:找等量关系。
常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题。
平面直角坐标系知识点
(一)有序数对
1、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。
2、坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
(二)平面直角坐标系
1、平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2、X轴:水平的数轴叫X轴或横轴。向右方向为正方向。
3、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
4、原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
(三)坐标
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
(四)象限
1、象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般,在x轴和y轴取相同的单位长度。
2、象限的特点:
1、特殊位置的点的坐标的特点:
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的.横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2、点到轴及原点的距离:
点到x轴的距离为|y|;
点到y轴的距离为|x|;
点到原点的距离为x的平方加y的平方再开根号;
3、三大规律
(1)平移规律:
点的平移规律
左右平移→纵坐标不变,横坐标左减右加;
上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律,找特殊点。
(2)对称规律
关于x轴对称→横坐标不变,纵坐标互为相反数;
关于y轴对称→横坐标互为相反数,纵坐标不变;
关于原点对称→横纵坐标都互为相反数。
人教版初中数学实用知识点相关文章: