2022初二数学寒假作业练习训练

业鸿3932分享

练习就是用题进行多角度、多层次的训练,通过多方面的强化,恰当的重复来掌握知识和技巧。下面是小编为大家整理的关于2022初二数学寒假作业练习训练,希望对您有所帮助!

初二数学的寒假练习题

一、填空题(每题3分,共30分)

1、函数y=+中自变量x的取值范围是。

2、某种感冒病毒的直径是0.00000012米,用科学记数法表示为。

3、计算:;;

4、若x2+2(m-3)x+16是完全平方式,则m的值等于

5、的最简公分母是。

6、化简的结果是.

7、当时,分式为0

8、填空:x2+()+14=()2;

()(-2x+3y)=9y2—4x2

9、若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,m的取值范围是________,若它的图象不经过第二象限,m的取值范围是________.

10、某市自来水公司为了鼓励市民节约用水,采取分段收费标准。某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示。请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为_________元/吨;若用水超过5吨,超过部分的水费为____________元/吨。

二、选择题(每题3分,共30分)

11、下列式子中,从左到右的变形是因式分解的是()

A、(x-1)(x-2)=x2-3x+2B、x2-3x+2=(x-1)(x-2)

C、x2+4x+4=x(x一4)+4D、x2+y2=(x+y)(x—y)

15、多项式(x+m)(x-3)展开后,不含有x的一次项,则m的取值为( )

A. m=0B. m=3C. m=-3D. m=2

16、点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1

A.y1>y2B.y1>y2>0C.y1

18、如果解分式方程出现了增根,那么增根可能是()

A、-2B、3C、3或-4D、-4

19、若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是()。

A(0,-2)B(,0)C(8,20)D(,)

20、小敏家距学校米,某天小敏从家里出发骑自行车上学,开始她以每分钟米的速度匀速行驶了米,遇到交通堵塞,耽搁了分钟,然后以每分钟米的速度匀速前进一直到学校,你认为小敏离家的距离与时间之间的函数图象大致是()

三、计算题(每题4分、共12分)

1、2(m+1)2-(2m+1)(2m-1)2、

四、因式分解(每题4分、共12分)

1、8a3b2+12ab3c2、a2(x-y)-4b2(x-y)

3、2x2y-8xy+8y

五、求值(本题5分)

课堂上,李老师出了这样一道题:

已知,求代数式,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。

六、解答题(1、2题每题6分,3题9分)

1某旅游团上午8时从旅馆出发,乘汽车到距离180千米的某著名旅游景点游玩,该汽车离旅馆的距离S(千米)与时间t(时)的关系可以用图6的折线表示.根据图象提供的`有关信息,解答下列问题:

⑴求该团去景点时的平均速度是多少?

⑵该团在旅游景点游玩了多少小时?

⑶求出返程途中S(千米)与时间t(时)的函数关系式,并求出自变量t的取值范围。

2、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:

请根据图2中给出的信息,解答下列问题:

(1)放入一个小球量桶中水面升高___________;

(2)求放入小球后量桶中水面的高度()与小球个数(个)之间的一次函数关系式(不要求写出自变量的取值范围);

(3)量桶中至少放入几个小球时有水溢出?

3、某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:

型号A型B型

成本(元/台)22002600

售价(元/台)28003000

(1)冰箱厂有哪几种生产方案?

(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?

(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.

初二数学上册寒假练习

一、精心选一选(本题共10小题;每小题2分,共20分)

1.下列四个图案中,是轴对称图形的是()

.ABCD2.等腰三角形的一个内角是50°,则另外两个角的度数分别是()

A、65°,65°B、50°,80°

C、65°,65°或50°,80°D、50°,50

3.下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于的点之间有无数多个点表示无理数,其中错误的命题的个数是()

A、2B、3C、4D、5

4.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是()A.4B.3C.5D.2

5.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1、y2大小关系是()

A.y1>y2B.y1=y2C.y1<y2d.不能比较< p="">

6.下列运算正确的是()

A.x2+x2=2x4B.a2a3=a5

C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y2

7.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分

为△EBD,那么,下列说法错误的是()

A.△EBD是等腰三角形,EB=ED

B.折叠后∠ABE和∠CBD一定相等

C.折叠后得到的图形是轴对称图形

D.△EBA和△EDC一定是全等三角形

8.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()

A.10cmB.12cmC.15cmD.17cm

9计算的结果是

A.a5B.a6C.a8D.3a2

10.若正比例函数的图像经过点(-1,2),则这个图像必经过点()

A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)

一、选择题(本大题共10小题,每小题2分,共20分)

1.3的相反数是

A.3B.-3C.D.-

2.等于

A.2B.C.2-D.-2

3.一次函数y=kx+2的图象与y轴的交点坐标是

A.(0,2)B.(0,1)C.(2,0)D.(1,0)

4.下列四个图形中,全等的图形是

A.①和②B.①和③C.②和③D.③和④

5.已知地球上七大洲的总面积约为150000000km2,则数字150000000用科学记数法可以表示为

A.1.5×106B.1.5×107C.1.5×108D.1.5×109

6.若点P(m,1-2m)在函数y=-x的图象上,则点P一定在

A.第一象限B.第二象限C.第三象限D.第四象限

7.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是

A.Q=40-B.Q=40+C.Q=40-D.Q=40+

8.如图,在△ABC中,AD⊥BC,垂足为D,若AD=3,∠B=45°,△ABC的面积为6,则AC边的长是

A.B.2

9.如图,在平面直角坐标系xOy中,已知AD平分∠OAB,DB⊥AB,BC//OA,点D的坐标为D(0,),点B的横坐标为1,则点C的坐标是

A.(0,2)B.(0,+)C.(0,)D.(0,5)

10.已知A、B两地相距900m,甲、乙两人同时从A地出发,以相同速度匀速步行,20min后到达B地,甲随后马上沿原路按原速返回,回到A地后在原地等候乙回来;乙则在B地停留10min后也沿原路以原速返回A地,则甲、乙两人之间的距离s(m)与步行时间t(min)之间的函数关系可以用图象表示为

二、细心填一填(本题共10小题;每小题3分,共60分.)

11.若x2+kx+9是一个完全平方式,则k=.

12.点M(-2,k)在直线y=2x+1上,则点M到x轴的距离是.

13.已知一次函数的图象经过(-1,2),且函数y的值随自变量x的增大而减小,请写出一个符合上述条件的函数解析式

14.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离是.

15.在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C=.

16.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为.

17.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a元;若每户/月超过12吨,超出部分按每吨2a元收取.若小亮家5月份缴纳水费20a元,则小亮家这个月实际用水

18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.

一定成立的结论有____________(把你认为正确的序号都填上).

19.对于数a,b,c,d,规定一种运算=ad-bc,如=1×(-2)-0×2=-2,那么当=27时,则x=

20.已知则=

三.用心做一做

21.计算(6分,每小题3分)

(1)分解因式6xy2-9x2y-y3

(2)

22.(8分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1

(2)请计算△ABC的面积

(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标。

23/(6分)先化简,再求值:,其中=-2.

24.(8分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:

(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?

(2)分别求出甲、乙两人的行驶速度;

(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):①甲在乙的前面;②甲与乙相遇;③甲在乙后面.

25.(6分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;

(2)BO=DO.

26.(8分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.

(1)求∠BDC的度数;

(2)求BD的长.

27.(10分)甲、乙两重灾区急需一批大型挖掘机,甲地需25台,乙地需23台;A、B两省获知情况后慷慨相助,分别捐赠挖掘机26台和22台并将其全部调往灾区.若从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地台,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元.

(1)求出y与x之间的函数关系式及自变量x的取值范围;

(2)若要使总耗资不超过15万元,有哪几种调运方案?

(3)怎样设计调运方案能使总耗资最少?最少耗资是多少万元?

初二数学上册寒假练习题

一、选择题(本大题共15小题,每小题4分,共60分)在每小题所给的4个选项中,只有一项是符合题目要求的.请将正确答案涂在答题纸上。

1.下列长 度的三条线段能组成三角形的是

A.1,2,3 B.1, ,3 C.3,4,8 D.4,5,6

2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是

A. B. C. D.

3.下列运算正确的是

A. B. C. D.

4.用长方形纸片折出直角的平分线,下列折法正确的是

A. B. C. D.

5.化简 的结果是

A. B. C. D.

6.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=

A.118° B.119° C.120° D.121°

7.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC 于点D、E,则∠BAE=

A.80° B.60° C.50° D.40°

8.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为

A.36° B.60° C.72° D.108°

9.在平面直角坐标系中,点(4,﹣5)关于x轴对称点的坐标为

A.(4,5) B.(﹣4,﹣5) C.(﹣4,5) D.(5,4)

10.请你计算:(1﹣x)(1+x),

(1﹣x)(1+x+x2),…,

猜想:(1﹣x)(1+x+x2+…+xn)的结果是

A. 1﹣xn+1 B. 1+xn+1 C. 1﹣xn D. 1+xn

11.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证

A. (a+b)2=a2+2ab+b2 B. (a﹣b)2=a2-2ab+b2

C. (a+b)(a﹣b)= a2﹣b2 D. (a+2b)(a﹣b)=a2+ab﹣2b2

12. 下列变形正确的是

A. B. C. D.

13. 下列计算中,不正确的是

A. B.

C. D.

14. 已知 , ,则

A.4 B.3 C.12 D.1

15. 一项工程,甲单独做要x天完成,乙单独做要y天完成,则甲、乙合做完成工程需要的天数为

A. B. C. D.

二、填空题(本大题共4小题,每小题5分,共20分).

16. 因式分解: ____________________.

17. 分式方程 的解是__________.

18. 如图,将长方形ABCD沿AE折叠,得到如图的图形.已 知∠CEB′=50°,则∠AEB′的度数为________.

19. 如图,将一副直角三角板叠在一起,使直角顶点重合于点O,若∠DOC=28°,则∠AOB的度数为   .

三、解答题 (共20分)

20. (满分8分) 某市为治理污水,需要铺设一段全长为300米的污水排放管道.铺设120米后,为了尽量减少施工对城市所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求后来每天铺设管道的长度.

21. (满分12分) 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作 △ADE,使AD=AE,∠DAE=∠BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的 度数;

(2)设∠BAC=α,∠BCE=β.

①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;

②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.


2022初二数学寒假作业练习训练相关文章:

初二数学2022寒假作业答案出炉

寒假作业数学练习必备

2021八年级数学寒假作业答案最新

2021初二寒假作业答案参考

2022高二数学上册寒假作业答案大全

2022初三上册数学寒假作业答案大全学生必备

2022四年级数学寒假作业练习题答案

初二数学寒假作业答案大全

2021数学八年级寒假作业答案

寒假作业数学练习2021必备

    260124