高中数学复习资料总结
数学是一个系统化的逻辑体系,它有着明确的结构。在这个结构的体系中,数学知识具有一定的抽象性和具体性。下面是小编为大家整理的关于高中数学复习资料,希望对您有所帮助!
高三数学复习要点
一、充分条件和必要条件
当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
二、充分条件、必要条件的常用判断法
1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A⊆B,则p是q的充分条件。
若A⊇B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A⊈B,且B⊉A,则p是q的既不充分也不必要条件。
三、知识扩展
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
高中数学复习资料整理
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
高中数学复习资料
(1) 常规的线性规划问题,即求在线性约束条件下的最值问题;
(2) 与函数、平面向量等知识结合的最值类问题;
(3) 求在非线性约束条件下的最值问题;
(4) 考查线性规划问题在解决实际生活、生产实际中的应用.而其中的第(2)(3)(4)点往往是命题的创新点。
【例1】 设函数f(θ)=?3?sin?θ+??cos?θ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点?p(x,y)?,且0≤θ≤?π?。
(1) 若点p的坐标为12,32,求f(θ)的值;
(2) 若点p(x,y)为平面区域ω:x+y≥1,x≤1,y≤1。 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值。
分析 第(1)问只需要运用三角函数的定义即可;第(2)问中只要先画出平面区域ω,再根据抽画出的平面区域确定角θ的取值范围,进而转化为求f(θ)=a?sin?θ+b?cos?θ型函数的最值。
解 (1) 由点p的坐标和三角函数的定义可得?sin?θ=32,?cos?θ=12。
于是f(θ)=3?sin?θ+??cos?θ=?3×32+12=2。
(2) 作出平面区域ω (即三角形区域abc)如图所示,其中a(1,0),b(1,1),?c(0,1)?.于是0≤θ≤?π?2,
又f(θ)=3?sin?θ+?cos?θ=2?sin?θ+?π?6,
且?π?6≤θ+??π?6≤?2?π?3,
故当θ+?π?6=?π?2,即θ=?π?3时,f(θ)取得最大值,且最大值等于2;
当θ+?π?6=?π?6,即θ=0时,f(θ)取得最小值,且最小值等于1。