高二数学常用公式总结

业鸿3932分享

高中数学比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。下面是小编为大家整理的关于高二数学常用公式总结,希望对您有所帮助!

高二数学向量公式总结

1.单位向量:单位向量a0=向量a/|向量a|

2.P(_,y)那么向量OP=_向量i+y向量j

|向量OP|=根号(_平方+y平方)

3.P1(_1,y1)P2(_2,y2)

那么向量P1P2={_2-_1,y2-y1}

|向量P1P2|=根号[(_2-_1)平方+(y2-y1)平方]

4.向量a={_1,_2}向量b={_2,y2}

向量a_向量b=|向量a|_|向量b|_Cosα=_1_2+y1y2

Cosα=向量a_向量b/|向量a|_|向量b|

(_1_2+y1y2)

根号(_1平方+y1平方)_根号(_2平方+y2平方)

5.空间向量:同上推论

(提示:向量a={_,y,z})

6.充要条件:

如果向量a⊥向量b

那么向量a_向量b=0

如果向量a//向量b

那么向量a_向量b=±|向量a|_|向量b|

或者_1/_2=y1/y2

7.|向量a±向量b|平方

=|向量a|平方+|向量b|平方±2向量a_向量b

=(向量a±向量b)平方

高二数学椭圆公式知识点

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l

弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r

锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s_h圆柱体V=p_r2h

乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系_1+_2=-b/a_1__2=c/a注:韦达定理

判别式

b2-4ac=0注:方程有两个相等的实根

b2-4ac>0注:方程有两个不等的实根

b2-4ac<0注:方程没有实根,有共轭复数根

两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

高中二年级数学阶乘公式总结

正整数阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。

例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是_,_就是n的阶乘。

任何大于1的自然数n阶乘表示方法:

n!=1×2×3×……×n

n!=n×(n-1)!

n的双阶乘:

当n为奇数时表示不大于n的所有奇数的乘积

如:7!!=1×3×5×7

当n为偶数时表示不大于n的所有偶数的乘积(除0外)

如:8!!=2×4×6×8

小于0的整数-n的阶乘表示:

(-n)!= 1 / (n+1)!

以下列出0至20的阶乘:

0!=1,注意(0的阶乘是存在的)

1!=1,

2!=2,

3!=6,

4!=24,

5!=120,

6!=720,

7!=5,040,

8!=40,320

9!=362,880

10!=3,628,800

11!=39,916,800

12!=479,001,600

13!=6,227,020,800

14!=87,178,291,200

15!=1,307,674,368,000

16!=20,922,789,888,000

17!=355,687,428,096,000

18!=6,402,373,705,728,000

19!=121,645,100,408,832,000

20!=2,432,902,008,176,640,000

另外,数学家定义,0!=1,所以0!=1!


高二数学常用公式总结相关文章:

高二数学知识点归纳解读2021

高中高二基础数学知识点总结2021

高二年级数学重要知识难点大纲总结2021

高二数学知识难点归纳大纲总结梳理2021

广东全新高考高二数学知识点及公式2021

高二年级数学知识点梳理2021

2021高中数学最详细重点知识点全总结

高中数学基本知识点归纳

高二数学上册知识点内容掌握归纳2021

2021高中数学的最详细重点知识点全总结

    197926