小学四年级数学下册知识点重点
你知道四年级数学有哪些知识点是真正对我们有帮助的吗?在平凡的学习生活中,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。下面是小编给大家整理的小学四年级数学下册知识点重点,仅供参考希望能帮助到大家。
小学四年级数学下册知识点重点篇1
1、亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的'零必须读。中间不管连续有几个零,只读一个零。
2、亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
小学四年级数学下册知识点重点篇2
一、加法运算定律
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的.和。a-b-c=a-(b+c)
二、乘法运算定律
1、乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(ab)c=a(bc)
乘法的这两个定律往往结合起来一起使用。如:125788的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)c=ac+bc(a-b)c=ac-bc
小学四年级数学下册知识点重点篇3
大数的认识
1、10个一千是一万,10个一万是十万,10个十万是一百万,10个一百万是一千万。
2、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。
3、一(个)、十、百、万、十万、百万、千万、亿、十亿……都是计数单位。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
数位顺序表
数级……亿级万级个级
数位……千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位
计数单位……千亿百亿十亿亿千万百万十万万千百十个
5、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。
6、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的`0都不读,其它数位有一个0或几个0,都只读一个“零”。
7、写数时,万级和亿级上的数都是按照个级上数的方法来写,哪一位不够用0来补足。改写“万”或“亿”作单位的数,只要将末尾的4个0或8个0去掉或加上“万”或“亿”字就行了。1.把多位数改写成“万”、“亿”。中间要用“=”连接
8、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。
方法是:看尾数位上的数,如果是4或比4小,就把尾数舍去,并在数的末尾添上一个计数单位“万”或者“亿”;如果是5或比5大,要在前一位加1,再把尾数舍去,添上计数单位“万”或者“亿”。得出的是近似数,中间要用“≈”连接。
9、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有用0表示,0也是自然数。最小的自然数是0,没有的自然数,自然数的个数是无限的。
10、我国在十四世纪发明的至今仍在使用的计算工具是算盘。算盘上方一个珠子代表5,下方一个珠子表示1。
11、在计算器上,ON/C键是开关及清屏键,CE键是清除键,AC键是归0键。+、-、×、÷键是运算符号键。
小学四年级数学下册知识点重点篇4
一、升和毫升
1、升:升是常用的容量单位。计量水、油、饮料等液体的多少,通常用升作单位,用L表示。
2、毫升:计量比较少的液体,通常用毫升作单位,用mL(ml)表示。
3、它们的进率是1000,即1升=1000毫升
二、两、三位数除以两位数
1、两、三位数除以整十数的估算:先用被除数的前两位除以除数,如果够除商就是两位数,如果不够,就看被除数的前三位,商是一位数。
2、两、三位数除以两位数,可以用四舍五入法,把除数看作整十数来试商。四舍之后,除数小了,初商可能偏大,要调小;五入之后,除数大了,初商可能偏小,要调大;每次余下的数都要比除数小。
3、被除数和除数同时乘或除以一个相同的数(0除外),商不变。
4、验算:没有余数的除法,用商除数,看看是否等于被除数;
有余数的除法,用商除数+余数,看看是否等于被除数。
5、用除法解决周期现象中的问题比较方便。
三、观察物体
1、同样的物体,从不同的面看到的图形可能一样,也可能不一样;不同的物体从同一个面观察,看到的图形也有可能一样。
2、从一个点最多只能看到物体的三个面。
四、统计表和条形统计图
1、统计表用表格呈现数据,条形统计图用直条呈现数据。
2、统计表中合计是几个项目数量的总计。
3、通常用画正字的方法来整理数据。
4、求平均数的方法:、移多补少;、先求和再求平均数(平均数=总数量总个数)
五、解决问题的策略
1、步骤:、弄清题意,明确已知条件和所求问题;、分析数量关系,确定先算什么,再算什么;
2、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。
六、可能性
1、一定、可能、不可能可以用来描述事件发生的可能性。
2、有些事件发生的可能性是有大小。,数量多,可能性就大;数量少,可能性就小。
七、整数四则混合运算
1、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法,再算加、减法。
2、算式里有括号,要先算括号里面的,括号里面也要先算乘、除法,再算加、减法。
3、同级的运算,哪个在前就先算哪一个。
八、垂直与平行线
1、线段有两个端点,可测量;射线有一个端点,不可测量;直线没有端点,不可测量。
2、连接两点的线段的长度叫作这两点间的距离。
3、从一点引出的两条射线可以组成角。角有一个顶点和两条边。角的`两条边是射线。
4、量角时要注意量角器的中心与顶点重合,0度刻度线与角的一条边重合。
5、直角等于90度,平角等于180度,周角等于360度,锐角小于90度,钝角大于90度小于180度。
锐角直角钝角平角周角。1个周角=2个平角=4个直角
6、两条直线相交成直角,这两条直线互相垂直,其中一条是另一条直线的垂线,交点叫作垂足。
7、从直线外一点到这条直线的垂直线段最短,这条垂直线段的长度叫作点到直线的距离。
8、在一个平面内,不相交的两条直线互相平行,其中一条直线是另一条直线的平行线。
小学四年级数学下册知识点重点篇5
第一单元乘法
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
3、末尾有0的乘法计算方法:现把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
第二单元升和毫升
1、1升(L)=1000毫升(ml、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
第三单元三角形
1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。如:人字梁、斜拉桥、自行车车架。
4、三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
5、有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
6、有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。
8、把一个三角形分成两个直角三角形就是画它的高。
9、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60,所有等边三角形的三个角都是60。)
10、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45,顶角等于90。
10、求三角形的一个角=180-另外两角的和
11、等腰三角形的顶角=180-底角2=180-底角-底角
12、等腰三角形的底角=(180-顶角)2
13、一个三角形最大的角是60度,这个三角形一定是等边三角形。
14、多边形的内角和=180(n-2){n为边数}
第四单元混合运算
混合运算中:先乘除后加减,既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
第五单元平行四边形和梯形
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行四边形。
3、平行四边形容易变形(不稳定性)。生活中许多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平行的一组对边较短的叫做梯形的上底,较长的叫做梯形的下底,不平行的一组对边叫做梯形的腰,两条平行线之间的距离叫做梯形的高(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
第六单元找规律
1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:
(1)爸爸、妈妈、我排列照相,有几种排法:23。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
第七单元运算律
1、乘法交换律:ab=ba
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc(合起来乘等于分别乘)
4、衍生:(a-b)c=ac-bc
5、简便运算典型例题:10235=(100+2)35
第八单元对称、平移和旋转
1、画图形的另一半:
(1)找对称轴
(2)找对应点
(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
第九单元倍数和因数
1、43=12,或123=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的'。如18的因数有:1、2、3、6、9、18。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。如:18的倍数有:18、36、54、72、90(省略号非常重要)
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。(如:10、20、30、40)
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数。(或质数)如:2、3、5、7、11、13、17、19的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。如:4、6、8、9、10
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、哥德巴赫猜想:任何大于2的偶数都是两个素数之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
第十单元用计算器探索规律
1、积的变化规律:
①一个因数缩小几倍,另一个因数扩大相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
2、商的变化规律:2是素数中唯一的偶数。(所以所有的素数都是奇数这一说法是错误
①被除数和除数同时扩大(或缩小)相同的倍数,除外)(0,商不变。(余数会变)
②被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。
③被除数不变,除数缩小几倍(0除外),商反而扩大几倍。
小学四年级数学下册知识点重点篇6
第一单元知识点
1.在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2.在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3.算式里有括号,先算括号里面的,在算括号外面的。
4.加法、减法、乘法和除法统称四则运算。
5.一个数加上0还得原数,一个数减去0也得原数。
6.被减数等于减数,差是0。
7.一个数和零相乘,仍得0。
8.0除以一个非0的数,还得0。
9.0不能作除数。
10.在解决问题时,如果列综合算式,必须用脱式计算。
11.任何数除以0都得0。(×)因为0不能做除数。
第二单元知识点
1.如何确定物体所在的位置?
(1)明确方向。
(2)明确距离。
2.根据方向和距离来确定物体的位置。
3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。
4.平面图形的一般画法:
(1)先确定某建筑物的方向。
(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)
(3)最后确定距离。
5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的`南偏东30度500米处,则乙地在甲地的北偏西30度500米处。
第三单元知识点
1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。
用字母表示为:a+b=b+a
2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)
3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
用字母表示为:a×b=b×a
4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。
用字母表示为:(a×b)×c=a×(b×c)
5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c
6.类似于乘法分配律的简便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)
8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+ca+(b-c)=a+b-c
括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”,“-”变“+”。用字母表示为:a-(b+c)=a-b-ca-(b-c)=a-b+c
9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)
10.在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:
a×(b×c)=a×b×ca×(b÷c)=a×b÷c
括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c
12.另两种简便方法:
(1)把一个因数改写成两个一位数相乘的形式。
例如:25×12
=25×(4×3)
=(25×4)×3
=100×3
=300
(2)把一个因数改写成两个数相除的形式,然后变成乘除混和运算。
例如:12×25
=12×(100÷4)
=12×100÷4
=12÷4×100
=3×100
=300
第四单元知识点
1.在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。
2.分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。
3.小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位间的进率是10。
4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。
5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……
6.小数的读法:
(1)先读整数部分,再读点,最后读小数部分。
(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。
(3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。
7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
8.利用小数的性质进行小数的化简和改写。
例如:0.70=0.7105.0900=105.09(这是小数的化简)
又如:不改变数的大小,把下面各数写成三位小数
0.2=0.2004.08=4.0803=3.000(这是改写小数)
9.如何比较小数的大小?
先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……
10.小数点移动的规律:
(1)小数点向右
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;
……
(2)小数点向左
移动一位,小数就缩小到原数的1/10;
移动两位,小数就缩小到原数的1/100;
移动三位,小数就缩小到原数的1/1000;
小学四年级数学下册知识点重点篇7
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
乘法分配律的应用:
①类型一:(a+b)×c(a-b)×c
=a×c+b×c=a×c-b×c
②类型二:a×c+b×ca×c-b×c
=(a+b)×c=(a-b)×c
③类型三:a×99+aa×b-a
=a×(99+1)=a×(b-1)
④类型四:a×99a×102
=a×(100-1)=a×(100+2)
=a×100-a×1=a×100+a×2
三、简便计算
1.连加的简便计算:
①使用加法结合律(把和是整十、整百、整千、的结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。如:106-(26+74)=106-26-74
3.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)
例如:123+38-23=123-23+38
146-78+54=146+54-78
4.连乘的简便计算:
使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等。看见25就去找4,看见125就去找8;
5.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13
四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c=a÷(b×c)
1、常见乘法计算:
25×4=100
125×8=1000
2、加法交换律简算例子:
50+98+50
=50+50+98
=100+98
=198
3、加法结合律简算例子:
488+40+60
=488+(40+60)
=488+100
=588
4、乘法交换律简算例子:
25×56×4
=25×4×56
=100×56
=5600
5、乘法结合律简算例子:
99×125×8
=99×(125×8)
=99×1000
=99000
6、含有加法交换律与结合律的简便计算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律简算例子:
1、分解式
25×(40+4)
=25×40+25×4
=1000+100
=1100
2、合并式
135×12—135×2
=135×(12—2)
=135×10
=1350
3、特殊1
99×256+256
=99×256+256×1
=256×(99+1)
=256×100
=25600
4、特殊2
45×102
=45×(100+2)
=45×100+45×2
=4500+90
=4590
5、特殊3
99×26
=(100—1)×26
=100×26—1×26
=2600—26
=2574
6、特殊4
35×8+35×6—4×35
=35×(8+6—4)
=35×10
=350
一、连续减法简便运算例子:
528—65—35528—89—128528—(150+128)
=528—(65+35)=528—128—89=528—128—150
=528—100=400—89=400—150
=428=311=250
二、连续除法简便运算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
小学四年级数学下册知识点重点篇8
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
6、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数;字母表示:a÷0错误
2、一个数加上0还得原数;字母表示:a+0=a
3、一个数减去0还得原数;字母表示:a-0=a
4、被减数等于减数,差是0;字母表示:a-a=0
5、一个数和0相乘,仍得0;字母表示:a×0=0
6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
注意:1、比例尺2、正北方向3、角的画法
2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)
3、简单路线图的绘制。
4.地图的三要素:图例、方向、比例尺。
5.确定方向时:A、先确定观测点
(1)从那里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B站在观测点来看方向。
例如:①东偏南25°(标25°的那个角就靠近东)
②西偏北35°(标35°的那个角就靠近西)
6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。
7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。