2023安徽数学高考真题及解析
小编带来了2023安徽数学高考真题及解析,数学与我们的生活有着密切的联系,现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用。下面是小编为大家整理的2023安徽数学高考真题及解析,希望能帮助到大家!
2023安徽数学高考真题及解析
高考必考数学知识点
直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.
5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.
7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
初中数学和高中数学的区别
一、初中数学形象化,便于学生理解,并且联系生活实际比较多。对于这些知识点,只要用心一些,很是比较容易把握的,运用起来也会比较自如。而高中数学相对来说则比较抽象,学生经常不能很好的把所学知识理解透彻,甚至进入理解误区,如此,便造成运用定理和公式不熟练或运用错误的现象。针对这些情况,建议家长由专业教师引导一下,深入浅出,为高中数学后续课程的学习打下坚实的基础;
二、初中数学浅显化,学生只要认真思考,理解其所表达的意思。而高中很多知识点则较为隐晦,学生体会不到所表达的意思。比如:初中所学的二次函数,比较多的偏向于感性认识,学生们往往能较好地掌握,但是进入高中之后,高中数学对二次函数提出了新的更高的要求,比较偏向于理性思维时,某些学生便会适应不过来。
三、初中数学知识容量相对较小。总体而言,初中数学知识点较少,学生能够通过三年的系统学习,比较好地掌握。高中数学则知识点众多,而每个章节所包含的小知识点则更是繁杂,学生们则往往难以适应。