名师一号高考总复习数学

婉玲0分享

对于一些想要提升学历的朋友来说,成人高考肯定是一种很好的途径,因为它录取率高,考试难度较小。小编整理了名师一号高考总复习数学知识点希望可以帮到大家!

集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

1)元素的确定性如:世界上最高的山

2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

u 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) Venn图:

4、集合的分类:

(1) 有限集 含有有限个元素的集合

(2) 无限集 含有无限个元素的集合

(3) 空集 不含任何元素的集合

韦达定理

韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

韦达定理公式

韦达定理:两根之和等于-b/a,两根之差等于c/a.

x1×x2=c/a

x1+x2=-b/a

韦达定理说明了一元二次方程中根和系数之间的关系。

穷级数

(一)数项级数

1.知识范围

(1)数项级数

数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件

(2)正项级数收敛性的判别法

比较判别法 比值判别法

(3)任意项级数

交错级数 绝对收敛 条件收敛 莱布尼茨判别法

2.要求

(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。

(2)掌握正项级数的比值判别法。会用正项级数的比较判别法。

(3)掌握几何级数、调和级数与级数的收敛性。

(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。

(二)幂级数

1.知识范围

向量代数与空间解析几何

(一)向量代数

1.知识范围

(1)向量的概念

向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦

(2)向量的线性运算

向量的加法 向量的减法 向量的数乘

(3)向量的数量积

二向量的夹角 二向量垂直的充分必要条件

(4)二向量的向量积 二向量平行的充分必要条件

2.要求

(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的充分必要条件。

(1)幂级数的概念

收敛半径 收敛区间

(2)幂级数的基本性质

(3)将简单的初等函数展开为幂级数

2.要求

(1)了解幂级数的概念。

(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。

(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。

常微分方程

(一)一阶微分方程

1.知识范围

(1)微分方程的概念

微分方程的定义 阶 解 通解 初始条件 特解

(2)可分离变量的方程

(3)一阶线性方程

2.要求

(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。

(2)掌握可分离变量方程的解法。

(3)掌握一阶线性方程的解法。

(二)可降价方程

1.知识范围

(1) 型方程

(2) 型方程

2.要求

(1)会用降阶法解 型方程。

(2)会用降阶法解 型方程。

    762633