2023新高考I卷数学试题及答案一览

广辉1865分享

高考不能全国统一试卷受限于历史原因,原先不同省份之间使用的高中教材,存在一些差异。下面是小编整理的2023新高考I卷数学试题及答案一览,希望能够帮助到大家。

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

2023新高考I卷数学试题及答案一览

高考常用数学公式

两角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb。

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)。

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。

倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga。

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

半角公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)。

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))。

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))。

和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)。

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)。

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)。

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb。

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb。

等差数列

1、等差数列的通项公式为:

an=a1+(n-1)d(1)。

2、前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)。

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

3、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}。

若m,n,p,q∈N_且m+n=p+q,则有

am+an=ap+aq。

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1。

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)_数÷2。

项数=(末项-首项)÷公差+1。

首项=2和÷项数-末项。

末项=2和÷项数-首项。

项数=(末项-首项)/公差+1。

等比数列

1、等比数列的通项公式是:An=A1_^(n-1)。

2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)。

且任意两项am,an的关系为an=am·q^(n-m)。

3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}。

4、若m,n,p,q∈N_则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_q;

②在等比数列中,依次每k项之和仍成等比数列。

“G是a、b的等比中项”“G^2=ab(G≠0)”。

在等比数列中,首项A1与公比q都不为零。

抛物线

1、抛物线:y=ax_bx+c就是y等于ax的平方加上bx再加上c。

a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。

2023新高考I卷数学试题及答案一览

高考重要的数学公式

一、对数函数

log.a(MN)=logaM+logN

loga(M/N)=logaM-logaN

logaM^n=nlogaM(n=R)

logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

二、简单几何体的面积与体积

S直棱柱侧=c__h(底面周长乘以高)

S正棱椎侧=1/2__c__h′(底面的周长和斜高的一半)

设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2__(c+c′)__h

S圆柱侧=c__l

S圆台侧=1/2__(c+c′)__l=兀__(r+r′)__l

S圆锥侧=1/2__c__l=兀__r__l

S球=4__兀__R^3

V柱体=S__h

V锥体=(1/3)__S__h

V球=(4/3)__兀__R^3

三、两直线的位置关系及距离公式

(1)数轴上两点间的距离公式|AB|=|x2-x1|

(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

|AB|=sqr[(x2-x1)^2+(y2-y1)^2]

(3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

(A^2+B^2)

(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

C2|/sqr(A^2+B^2)

同角三角函数的基本关系及诱导公式

sin(2__k__兀+a)=sin(a)

cos(2__k__兀+a)=cosa

tan(2__兀+a)=tana

sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

sin(2__兀-a)=-sina,cos(2__兀-a)=cosa,tan(2__兀-a)=-tana

sin(兀+a)=-sina

sin(兀-a)=sina

cos(兀+a)=-cosa

cos(兀-a)=-cosa

tan(兀+a)=tana

四、二倍角公式及其变形使用

1、二倍角公式

sin2a=2__sina__cosa

cos2a=(cosa)^2-(sina)^2=2__(cosa)^2-1=1-2__(sina)^2

tan2a=(2__tana)/[1-(tana)^2]

2、二倍角公式的变形

(cosa)^2=(1+cos2a)/2

(sina)^2=(1-cos2a)/2

tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

五、正弦定理和余弦定理

正弦定理:

a/sinA=b/sinB=c/sinC

余弦定理:

a^2=b^2+c^2-2bccosA

b^2=a^2+c^2-2accosB

c^2=a^2+b^2-2abcosC

cosA=(b^2+c^2-a^2)/2bc

cosB=(a^2+c^2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

tan(兀-a)=-tana

sin(兀/2+a)=cosa

sin(兀/2-a)=cosa

cos(兀/2+a)=-sina

cos(兀/2-a)=sina

tan(兀/2+a)=-cota

tan(兀/2-a)=cota

(sina)^2+(cosa)^2=1

sina/cosa=tana

两角和与差的余弦公式

cos(a-b)=cosa__cosb+sina__sinb

cos(a-b)=cosa__cosb-sina__sinb

两角和与差的正弦公式

sin(a+b)=sina__cosb+cosa__sinb

sin(a-b)=sina__cosb-cosa__sinb

两角和与差的正切公式

tan(a+b)=(tana+tanb)/(1-tana__tanb)

tan(a-b)=(tana-tanb)/(1+tana__tanb)

    738276