中考数学公式排列组合

世平21372分享

中考是海,青涩的我们也曾惧怕它试探它。然而当我们懂得人生的成长便是一次次从此岸到彼岸的跨越时,我们便可以接触它拥抱它并超越它。下面是小编给大家带来的中考数学公式排列组合,欢迎大家阅读参考,我们一起来看看吧!

数学公式:排列组合公式

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!乘m!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!乘n2!乘...乘nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

数学公式:导数公式

1.y=c(c为常数)y‘=0

2.y=x^ny’=nx^(n-1)

3.y=a^xy‘=a^xlna

y=e^xy’=e^x

4.y=logaxy‘=logae/x

y=lnxy’=1/x

5.y=sinxy‘=cosx

6.y=cosxy’=-sinx

7.y=tanxy‘=1/cos^2x

8.y=cotxy’=-1/sin^2x

9.y=arcsinxy‘=1/√1-x^2

10.y=arccosxy’=-1/√1-x^2

11.y=arctanxy‘=1/1+x^2

12.y=arccotxy’=-1/1+x^2

数学公式:韦达定理公式

一元二次方程ax^2+bx+c(a不为0)中

设两个根为x和y

则x+y=-b/a

xy=c/a

韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0

它的根记作X1,X2…,Xn

我们有

∑Xi=(-1)^1乘A(n-1)/A(n)

∑XiXj=(-1)^2乘A(n-2)/A(n)

∏Xi=(-1)^n乘A(0)/A(n)

其中∑是求和,∏是求积。

如果一元二次方程

在复数集中的根是,那么

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

由代数基本定理可推得:任何一元n次方程

在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:

其中是该方程的个根。两端比较系数即得韦达定理。

韦达定理在方程论中有着广泛的应用。

定理的证明

设x_1,x_2是一元二次方程ax^2+bx+c=0的两个解,且不妨令x_1gex_2。根据求根公式,有

x_1=frac{-b+sqrt{b^2-4ac}},x_2=frac{-b-sqrt{b^2-4ac}}

所以

x_1+x_2=frac{-b+sqrt{b^2-4ac}+left(-b ight)-sqrt{b^2-4ac}}=-frac,

x_1x_2=frac{left(-b+sqrt{b^2-4ac} ight)left(-b-sqrt{b^2-4ac} ight)}{left(2a ight)^2}=frac


中考数学公式排列组合相关文章:

中考数学定理与公式整理

中考数学公式巧记口诀最新

初中生该如何学习中考数学 中考数学必背公式归纳

2020中考数学全书重点公式快速背诵口诀

中考数学之圆的公式定理整理

中考数学压轴题9种题型与策略

中考数学各种题型的解题技巧归纳

中考数学压轴题方法大全2021

中考数学知识技巧进一步复习方法2021

2020中考数学重点内容以及应试技巧盘点

    59224