人教版七年级上册数学优秀教案
所谓教案的艺术性就是构思巧妙,能让学生在课堂上不仅能学到知识,而且得到艺术的欣赏和快乐的体验。教案要成为一篇独具特色“课堂教学散文”或者是课本剧。这里给大家分享一些关于人教版七年级上册数学优秀教案,方便大家学习。
人教版七年级上册数学优秀教案篇1
《余角和补角》第2课时教案
教学目标:
知识与能力
能正确运用角度表示方向,并能熟练运算和角有关的问题。
过程与方法
能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。
情感、态度、价值观
能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。
教学重点:方位角的表示方法。
教学难点:方位角的准确表示。
教学准备:预习书上有关内容
预习导学:
如图所示,请说出四条射线所表示的方位角?
教学过程;
一、创设情景,谈话导入
在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?
二、精讲点拔,质疑问难
方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。
三、课堂活动,强化训练
例1如图:指出图中射线OA、OB所表示的方向。
(学生个别回答,学生点评)
例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?
(小组讨论,个别回答,教师总结)
例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。
(教师分析,一学生上黑板,学生点评)
四、延伸拓展,巩固内化
例4某哨兵上午8时测得一艘船的位置在哨所的.南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。
(1)请按比例尺1:200000画出图形。
(独立完成,一同学上黑板,学生点评)
(2)通过测量计算,确定船航行的方向和进度。
(小组讨论,得出结论,代表发言)
五、布置作业、当堂反馈
练习:请使用量角器、刻度尺画出下列点的位置。
(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。
(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。
(3)点C在点O的西北方向上,同时在点B的正北方向上。
作业:书P1407、9
人教版七年级上册数学优秀教案篇2
教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是___,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严
密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴
趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
人教版七年级上册数学优秀教案篇3
教学目标
1.知识与技能
①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.
2.过程与方法
经历本节的.学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3.情感、态度与价值观
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
教学重点难点
重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.
教与学互动设计
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.
说明:我们把所有的这些数统称为有理数.
人教版七年级上册数学优秀教案篇4
教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题
2,教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
课题:1.2.2数轴
教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动)设计理念
设置情境
引入课题教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解
寻找规律
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业1,必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
人教版七年级上册数学优秀教案篇5
教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题
2,选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
课题:1.2.4绝对值
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.
人教版七年级上册数学优秀教案相关文章: